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Abstract

Florida manatees (Trichechus manatus latiros-
tris) require frequent and extensive surveys to 
inform conservation efforts. Crewed aircraft sur-
veys can be costly, dangerous, and logistically 
complex. Unoccupied aerial systems (UASs) 
can assist with these issues. While manual 
review of UAS imagery can be time- and labor-
intensive, automated detection of manatees in 
aerial survey footage can help. We present an 
object-based image analysis workflow for the 
automated detection and count of Florida mana-
tees in Google Earth Engine, a free platform 
for research that allows for scripts and imagery 
sharing. Training and testing datasets were built 
from randomly extracted image frames from two 
stationary, unoccupied aerial system videos over 
thermal refugia. The workflow captured most 
manatees (93.98 to 95.62% recall; 4.38 to 6.03% 
false negative rate), but also counted many 
objects as manatees incorrectly (4.24 to 14.77% 
precision; 998.40 to 3,885.54% false positive 
over the detectable rate). Sun glint, mud plumes, 
and water close to shore were common causes of 
false positives. While the automated count was 
too high, the workflow lays markers over each 
detection, allowing for quick manual review 
for more accurate (semi-automated) counts. 
This study is an early step in automated detec-
tion tools for Florida manatees in a cloud-based 
platform. Future efforts could explore other plat-
forms or may improve this workflow by includ-
ing new classes for confounding objects.

Key Words: unoccupied aerial systems, object-
based image analysis, automated counts, auto-
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Introduction

The Florida manatee (Trichechus manatus latiros-
tris) inhabits coastal and riverine habitats of the 
United States (Reynolds et al., 2018). Its summer 
distribution spans from eastern Texas with occa-
sional sightings as far north as Massachusetts, 
while manatees are found year-round in Florida 
and southeastern Georgia waters (Reynolds et al., 
2018). In Florida, more than 6,000 manatees 
were counted in statewide aerial surveys from 
2015 through 2017 (Reynolds et al., 2018), and 
the number of manatees in Florida in 2021-2022 
was estimated to be 9,790 (with a 95% Bayesian 
credible interval of 8,350 to 11,730; Gowan et al., 
2023). Even though data indicated the popula-
tion increased during the 21st century (Reynolds 
et al., 2018), episodic mortality events due to algal 
blooms, cold stress, and potential starvation associ-
ated with seagrass loss have resulted in consider-
able loss to the manatee population (Bossart et al., 
1998; Hardy et al., 2019; Plön et al., 2021). The 
Florida manatee is also threatened by watercraft 
collisions and loss of thermal refugia, which are 
used during the colder months, in addition to other 
factors (Reynolds et al., 2018). 

In this context, abundance surveys can be a useful 
tool to assess the status and distribution of a popu-
lation to inform conservation efforts. Additionally, 
smaller-scale surveys of thermal refugia sites can 
inform management actions by evaluating changes 
in manatee site usage following habitat modifica-
tions or aiding in the implementation of protec-
tion zones to reduce risk of collision (Martin et al., 
2012; Udell et al., 2019; Edwards et al., 2021). 
While crewed aerial surveys have been conducted 
for Florida manatees (Edwards & Ackerman, 2016; 
Reynolds et al., 2018), aircraft use can be costly, 
dangerous, and logistically complex (Sasse, 2003; 
Martin et al., 2012; Hodgson et al., 2013; Edwards 
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et  al., 2021). Furthermore, crewed aerial surveys 
rely on observers to accurately identify species 
and count individuals in a very limited time, where 
animals visible to observers could potentially be 
missed (Hodgson et  al., 2013). Florida manatees 
are known to aggregate in large numbers in rela-
tively small thermal refugia, which can make it 
hard to count individuals from an aircraft and may 
increase the possibility of observers missing indi-
viduals (false negatives) (Edwards et al., 2021) or 
confusing other objects with manatees (false posi-
tives) (Martin et al., 2012; Augustine et al., 2023). 
Unoccupied aerial systems (UASs) can constitute 
a complementary tool to crewed aerial surveys 
worthy of exploration as they can minimize the 
risk to researchers and costs (Hodgson et al., 2013). 
UAS imagery also provides a permanent visual 
record, which would reduce the chances of missing 
animals (Hodgson et al., 2013) or help clear false 
positives by allowing researchers to revisit the 
images and cross-validate their counts with other 
observers (e.g., Gonçalves et  al., 2020). UASs 
have been used successfully to study manatees and 
dugongs (Dugong dugon). Jones et al. (2006) used 
a small UAS progressive-scan video for wildlife 
research and successfully detected Florida mana-
tees visually. Hodgson et  al. (2013) successfully 
analyzed UAS imagery to manually count dugongs 
at sea, and 95% of their possible dugong sightings 
were considered certain (as opposed to possible but 
uncertain or unclear). Turbidity was concluded to 
be an environmental variable that affected sighting 
rate, and image overlap was found to be useful to 
overcome hurdles of image analysis such as sun 
glint (direct sun reflection over water) and identi-
fying animals initially captured at awkward body 
angles (Hodgson et al., 2013).

The automation of marine mammal detection in 
remote sensing imagery (including UAS imagery) 
constitutes a complementary tool to manual counts 
worth exploring; it could help save researcher time, 
effort (e.g., reducing human fatigue from manual 
analyses), and cost (Rodofili et al., 2022). This is 
particularly relevant when animals are found over 
large areas or in large aggregations, like those 
formed by Florida manatees in thermal refugia 
during the colder months (Reynolds et al., 2018). 
However, we found relatively few works on auto-
mated detection of sirenians through UAS imagery 
analysis—mostly in conference papers on dugongs 
(see Table 1 in Rodofili et al., 2022). For example, 
Mejias Alvarez et al. (2013) applied an automated 
workflow to detect dugongs in UAS imagery, 
obtaining recalls (Equation 1) of 48.57 and 51.4%, 
and precisions (Equation 2) of 4.01 and 4.97%. 
Maire et  al. (2013) achieved better results with a 
recall of 69.4% and a precision of 30%, and even 
better results in calm water conditions (75.4% recall 

and 87.5% precision). The authors emphasized that 
dugong detection was difficult as their appearance 
varied dramatically with sea conditions, and their 
apparent color changed with depth and water tur-
bidity. Other conference papers used aerial imag-
ery of dugongs and convolutional neural networks 
(CNNs), a deep learning approach. For instance, 
Maire et al. (2014) obtained a recall of 59% and a 
precision of 30%. Also with dugongs, aerial imag-
ery, and deep learning, Maire et al. (2015) obtained 
recalls of 88.23 and 80.39% with precisions of 3.48 
and 15.12% (first and second generation Maxout 
deep convolutional neural networks [DCNNs], 
respectively), and recalls of 88.24 and 80.39% with 
precisions of 2.30 and 27.15% (first and second 
generation rectilinear DCNNs, respectively).

To see if we could expand on the existing auto-
mated detection of sirenians from UAS imagery, 
we developed and tested an object-based image 
analysis (OBIA) workflow to count detectable 
Florida manatees automatically in UAS imagery 
in the particular setting of thermal refugia. The 
workflow was developed in Google Earth Engine 
(2022), a cloud-based platform free for research 
and noncommercial use, to make it more widely 
accessible to conservation researchers and manag-
ers working in conservation.

Methods

Study Area
UAS stationary video data were collected over 
thermal refugia in Port of the Islands and other 
nearby thermal sites (Wooten’s Pond and Big 
Cypress National Preserve) in the Ten Thousand 
Islands region of Collier County, Florida, on 
31 January and 2 February 2017, 7 January 
2018, and 31 January 2019 (see map location in 
Edwards et al., 2021). The UAS was piloted at 
an altitude of 122 m to hover over each canal for 
10 min to guarantee complete width coverage and 
minimize glare and sun glint, with a camera foot-
print of ~183 m horizontally and ~122 m verti-
cally (Edwards et al., 2021).

Data Collection and Preparation
Study imagery consisted of frames extracted 
from UAS stationary footage over thermal refu-
gia (e.g., Figures 1 & 2), which allowed for 
images showing manatees with different postures 
and levels of submersion (e.g., Figure 3). UAS 
video data were provided by the Florida Fish and 
Wildlife Conservation Commission (FWC) and 
are described in more detail in Edwards et al. 
(2021). The surveys were conducted with a DJI 
Phantom 4 Pro UAS version 2 quadcopter. 

Two 10-min stationary videos were selected 
(Video 1 from 31 January 2017 and Video 2 from 
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Figure 1. Frame from Video 1 obtained from UAS 
overflights of Florida manatees’ (Trichechus manatus 
latirostris) thermal refugia in Collier County, Florida (two 
manatees observable; marked with red arrows)

7 January 2018) from all of the video available due 
to an optimal viewing angle close to the nadir (see 
Figure 4 for procedure details). Each video was ana-
lyzed to document time intervals in which mana-
tees were visible to the human eye (i.e., detected). 
These intervals were used to inform both the total 
number of frames to be extracted for analyses and 
the interval between subsequent frames. An R code 
(R Core Team, 2022; Supplemental Material 1; the 
supplemental materials for this article are avail-
able on the Aquatic Mammals website) was devel-
oped in RStudio (Posit Team, 2023) to extract a 
random sample of image frames to use as training 
data without replacement (Wickham et al., 2016, 
2021a, 2021b; Solymos & Zawadzki, 2020; Bivand 
et  al., 2021; Galili, 2021; Garnier & Muschelli, 
2021, 2022; Hijmans, 2021; Mouselimis, 2021; 
Csárdi et  al., 2023) for two classes: (1) manatees 
and (2)  water. First, 80 images with one or more 

manatees and 40 images without manatees were 
randomly extracted from each video using R to 
avoid capturing any temporal pattern of submersion 
and emersion that could bias the training process for 
automated detection. Then, a manual selection from 
these images was performed to retain 40 images 
with manatees and five images showing only water. 
The aim of the manatee images selection was to 
maximize the number of different postures and 
behaviors, as well as the differences among images, 
to increase image heterogeneity. A set separation 
of at least 11 consecutive image frames was also 
applied to limit redundancy. We aimed to include 
only image frames with clearly defined manatees in 
the training selection; however, this was difficult to 
fulfill for Video 1 while ensuring the posturing het-
erogeneity and meeting the time difference between 
frames requirement. As such, only the manatees we 
considered clearly defined (the ones recognized as 
manatees with confidence by the observer) of those 
image frames were included in the training dataset. 
Calves in Video 1 were excluded from the training 
dataset because of their low prevalence. Ultimately, 
98 manatees were selected from the 40 training 
images from Video 1, while the 40 images from 
Video 2 contained 46 manatees. The selection of 
five water images targeted variability in water con-
ditions and the presence of sun glint. The selection 
of water training images from Video 2 was balanced 
between the first and second halves of the video 
due to a change in video brightness. Finally, 50 
image frames were randomly extracted from each 
video with an R code, independently of intervals 
with or without manatee presence (Supplemental 
Material 2), to use as datasets to test the automated 
detection workflow after training. Each image 
was investigated manually (by eye) to identify all 
manatees (if any). Only objects that were unmistak-
ably identified as manatees were considered and 
counted.

Another R code was developed and utilized in 
conjunction with reference frames geolocated 
in the Global Mapper, Version 21.0 (b100319; 
64-bit), with ground control points to convert all the 
extracted image frames (training and testing) into 
geolocated red, green, and blue (RGB) .tiff files 
referenced to the World Geodetic System of 1984 
(WGS84; Supplemental Material 3). After this pro-
cess, image frames from Video 1 covered about 
29,590 m2 with a ground resolution of 10.09 cm 
per pixel (Figure 1), and those from Video 2 cov-
ered about 19,575 m2 with a ground resolution of 
9.44 cm per pixel (Figure 2).

Image Processing and Training Data Preparation
Google Earth Engine (GEE) (Gorelick et al., 
2017) was chosen to perform the image analyses 
because of its free access for research, education, 
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Figure 2. Frame from Video 2 obtained from UAS overflights of Florida manatees’ thermal refugia in Collier County, Florida 
(two manatees observable; marked with red arrows)

Figure 3. Detail of Florida manatees in different postures and submersion levels (upper manatee emerging, manatee in the 
middle higher above surface but not showing its tail, and lower manatee more submerged and showing its tail)
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Figure 4. Set of procedures for the object-based image analysis (OBIA) Florida manatee detection workflow

and nonprofit uses, along with its Javascript appli-
cation programming interface (API) and its abil-
ity to process imagery in the cloud regardless of 
hardware capabilities, to combine user-provided 
imagery with existing cloud-based imagery, and 
to share imagery and scripts. The training RGB 
images were uploaded to GEE, and a training 
script (Supplemental Material 4; see Google Earth 
Engine, 2024, for access to GEE information) was 
put together that integrated new code with Noel 
Gorelick’s EE102 simple non-iterative clustering 
(SNIC) script (Gorelick, n.d.) as described below.

First, we derived from the RGB bands a water 
index from Upadhyay et al. (2016) by combin-
ing the bands in a mathematical formula (see the 
formula in point 3 of algorithm B of their study). 
Then, a low-pass filter, a digital processing func-
tion, was applied over each of the original RGB 
bands with the objective of emphasizing larger, 
homogenous areas (Canada Centre for Remote 
Sensing, 2009). In GEE, a polygon (or feature 
in GEE terminology) was created to outline the 
area of analysis. This fixed location was defined 
to restrain the analyses to the water area. We also 
added code to enable polygon transformation into 
a geometry, a particular type of feature in GEE 
that is directly editable with drawing tools, thus 
enabling the user to quickly move or slightly 
modify the area of analysis if, for a given frame, 
an element needed to be excluded from the analy-
sis—for example, an increase in docked vessels 
along a canal, which would necessitate decreas-
ing the analysis area since docked vessels do not 
need to be included. This feature was utilized in 
the analysis of Video 1 due to slight changes in 
perspective caused by the UAS slightly moving 
accidentally, which then included some land in the 

original region of analysis. On other occasions, the 
region of analysis was modified to include mana-
tees along the canal edges. In general, the area of 
analysis for Video 1 was > 15,000 m2 (Figure 5a); 
and for Video 2, it was > 6,750 m2 (Figure 5b). The 
seven bands of the images (red, green, blue, water 
index, red low-pass filter, green low-pass filter, 
and blue low-pass filter) were then clipped using 
the outline features for each area of analysis to 
remove the terrestrial and anthropogenic elements 
found along the canals. 

Image analysis was based on OBIA principles, 
which have not been explored extensively for 
marine mammal detection compared to more 
traditional pixel-based methods (Rodofili et al., 
2022). These two approaches are fundamentally 
different in their units of analysis (Blaschke et al., 
2014). OBIA starts by segmenting the imagery, 
dividing it into spatially continuous objects where 
internal heterogeneity is less than the heteroge-
neity of neighbors (Blaschke et al., 2014). This 
process yields scale-dependent, potentially more 
meaningful segments (or clusters) made of many 
relatively homogeneous pixels (Blaschke et al., 
2014). A classification algorithm is then applied 
to the segments instead of the individual pixels 
that comprise them. Hence, OBIA is promising 
as it can provide information about the segments 
themselves, such as size, shape, or boundary con-
ditions, which can be integrated as variables to 
inform the classification, something that cannot 
be done in pixel-based classifications (Blaschke 
et al., 2014). Before applying the segmentation, 
the visualization was centered on the region of 
analysis at a fixed zoom scale, a condition for 
consistent analysis in GEE. The SNIC segmen-
tation algorithm available in GEE was used as it 
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Figure 5. (a) Region of analysis (> 15,000 m2) overlayed on frame from Video 1 to restrain the analysis to water areas for 
the OBIA Florida manatee detection workflow; and (b) region of analysis (> 6,750 m2) overlayed on frame from Video 2 to 
restrain the analysis to water areas for the OBIA Florida manatee detection workflow.

had been used before in GEE OBIA model codes 
(Gorelick, n.d.). Parameter values were optimized 
in preliminary testing to capture manatees fully as 
their own segment (Figure 6; Table 1).

The segmentation process produced a band with 
a unique identification number for each segment 
created and, for each of the seven original bands, 

one band that recorded the mean value of each 
segment for that band. In GEE, the segmentation 
process adapts to the scale of observation (i.e., 
the zoom level) of the interface and is therefore 
recomputed when the user interacts with the inter-
face. To allow for a consistent, fixed segmentation 
product, we exported the segmentation products as 
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Figure 6. (a) Original frame used in the OBIA Florida manatee detection workflow implemented in Google Earth Engine 
(GEE) with red arrow pointing to a manatee; and (b) frame segmentation with black arrow pointing to manatee segmentation.

GEE assets at a fixed scale corresponding to each 
video’s original resolution. The exported segmen-
tations were then used to compute the standard 
deviation of each segment for each band, as well 
as the area, perimeter, half-width, and half-height 
of each segment. These variables were combined 
with the mean of each band for each segment in 
a new image, corresponding to the inputs for the 

classification. The manatees within the image 
frames retained for training of the manatee class 
were then delineated manually by tracing a poly-
gon to create a GEE geometry (Figure 7a & b). 
Each of these polygons was used to extract the 
values of the descriptive statistics (i.e., mean, 
standard deviation, area, perimeter, half-width, 
and half-height) of the corresponding segments 
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Table 1. Segmentation parameters used in the object-based image analysis (OBIA) workflow implemented in Google Earth 
Engine (GEE) for Florida manatee (Trichechus manatus latirostris) detection

Parameter Definition Value

Seed points Starting points for segment building process 12

Compactness factor Causes segments to be more or less square 5

Connectivity Number of neighboring pixels considered 8

Neighborhood size Reduces tile boundary effects 24

or sections of segments inside the polygon. All 
polygons corresponding to manatees were then 
combined into one single GEE asset. The same 
was done for the frames retained for training the 
water class, although polygons were drawn to 
include the entire area of analysis, encompassing 
variable water conditions within the canals. While 
Video 1 showed a boat stationed in the middle of 
the canal in all its frames (Figure 1), Video 2 only 
showed boats docked by the shore, already left 
out by the area of analysis, extended as needed to 
include manatees in the water along the edge of 
the canals, as explained earlier. As a result, a boat 
class was not included in the training and, there-
fore, polygons for water training were drawn to 
avoid the boat in Video 1. Lastly, the training data-
sets for water and manatees were finally merged 
(Supplemental Material 4) to obtain the training 
from each video.

Testing of Workflow in Manatee Detection
We implemented a cross-validation approach 
under which the training dataset from Video 1 was 
used to detect manatees in the testing dataset from 
Video 2 (50 images), and vice versa. The testing 
script (Supplemental Material 5) followed the 
same processes described above for filter creation; 
segmentation; and the calculation of bands’ stan-
dard deviation, area, perimeter, half-width, and 
half-height per segment. It differed from the train-
ing script in that, because of a longer extension 
for additional steps, the script called on functions 
defined in separate scripts to perform particular 
steps such as the segmentation (Figure 8). The 
main script also defined inputs for particular func-
tions and retrieved outputs that served as input for 
the following functions (Figure 8). This prevented 
the testing script from being excessively long and 
confusing for future users. 

A function that performed the segmenta-
tion was followed by a second function that 
calculated the bands’ standard deviation, area, 
perimeter, half-width, and half-height per clus-
ter, and also performed the image classification 
(see Supplemental Material 5). A random forest 

algorithm (a machine learning classifier consist-
ing of an ensemble of decision trees in which 
each one performs a classification and the result 
of the majority of decision trees is the final clas-
sification result; Jensen, 2016) was used for the 
classification per se within this second function. 
This classifier was trained with the training data 
from the opposite video (e.g., classifier to test 
in Video 2 trained with data from Video 1) and 
a determined number of trees that was the same 
for both trainings. The number of trees used was 
determined by the computational limits of GEE 
in preliminary testing. The maximum allowable 
number of trees for the training from Video 1 was 
800. While GEE allowed more trees to be used 
for the training from Video 2, methodology was 
kept consistent, utilizing 800 trees throughout 
the analysis. The relative importance of variables 
per cluster in the classification was computed by 
adapting a SERVIR-Mekong (2019) approach. 
The image compiling all the variables per seg-
ment (mean and standard deviation of each band, 
area, perimeter, half-width, and half-height per 
cluster) was classified using the trained classi-
fier. In the final step within the second function, 
the classification was also exported as a GEE 
asset to fix it at the ground resolution scale and 
original coordinate reference system.

The exported classification was then used as 
input into a third function (pre-count function; 
see Supplemental Material 5). The first step 
of this function retained only the pixels of the 
manatee class, therefore keeping only segments 
of the manatee class. This function then took the 
manatee pixels left and identified close pixels 
through a 3-pixel kernel, assigning a unique ID. 
The size of this kernel was established in pre-
liminary testing to have it be sufficiently small 
enough to allow different manatees within an 
aggregation to have their pixels considered far 
enough to be given different object IDs to have 
them counted separately by the next function. 
However, a compromise had to be made so that 
the kernel size did not consider parts of the same 
manatee as different objects, which would result 
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Figure 7. (a) Manatee from Video 2 as seen in frame used in the OBIA Florida manatee detection workflow implemented 
in GEE; and (b) geometry (red) delineating said manatee to extract variable information for the manatees’ training dataset.

in them being assigned a different object ID and 
being counted separately by the next function. As 
a result of this function, the pixels within a seg-
ment that was classified as manatee were given a 
unique ID as a whole, and also various segments 
recognized as manatees were integrated (if con-
sidered close enough by the kernel) into objects 
whose pixels shared that unique ID. The assign-
ment of the unique ID step required a maximum 

size for the objects. If objects were bigger than 
that size, they would be considered background 
and masked. To limit manatee aggregations from 
being identified as background, we used the 
maximum size accepted by GEE (1,024 pixels). 
However, this is a limitation as there could be a 
situation in which a manatee aggregation larger 
than that size would be masked as part of the 
background. The product image with the object 
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IDs was exported as a GEE asset with the origi-
nal ground resolution scale.

A fourth function (count function; see 
Supplemental Material 5) was called from 
the main script as a last step. This function 
was given the image of the unique ID mana-
tee objects as input to reduce each of them to 
a vector or feature (as opposed to an image or 
raster). This allowed GEE to count them and 
retrieve the automated count value in GEE’s 
console. The fourth function also obtained the 
centroids from each of the features and con-
verted them to a geometry (as explained in the 
prior section) to better visualize such centroids 
over the image. While centroids could be visu-
alized over the image as points, the conversion 
to geometry allowed for more conspicuous 
markers representing each centroid that did not 
decrease in size when zooming out. The last 
step in the fourth function script was to export 
and save the centroids outside of GEE to enable 
the user to open them in a geographic informa-
tion system. 

After the testing script was run on each frame, 
the automated count was recorded. True and false 
positives and false negatives were calculated by 
comparing the manual and automated counts. 
Following Rodofili et al. (2022), the false nega-
tive rate (FNR) (Equation 3), the false positive 
over detectable rate (FPDR) (Equation 4), and the 
automated count deviation (ACD) (Equation  5) 
were calculated as accuracy metrics for each of 
the 50 test images of both Video 1 and Video 2 
individually (per-frame basis) given that each 
frame yielded an automated count value. Finally, 
mean FNR, FPDR, and ACD were calculated for 
each testing dataset, and a combined mean was 
calculated to obtain a final global accuracy mea-
sure of our workflow. Moreover, we calculated 
the FNR, FPDR, and ACD on a whole-video basis 
to replicate what would happen in a context where 
images would be mosaicked together by com-
bining the false positives and negatives from all 
frames from each video. We then also averaged 
the results from the two videos. We calculated 
the average recall (Equation 1) and precision 
(Equation 2) for each testing dataset (Videos 1 & 
2) on both bases (per-frame and whole-video) and 
their total average within a basis to compare our 
results with those of the other automated detection 
studies on Sirenia:

(1)  

Recall = ratio between true positives and the sum 
of true positives and false negatives, presented as 
a percentage; TP = true positives; and FN = false 
negatives.

(2)  

Precision = ratio between true positives and the 
number of positive detections by an automated 
method, presented as a percentage; TP = true posi-
tives; and FP = false positives.  

(3)

False negative rate = ratio between the number of 
animals missed by an automated method (numera-
tor) and the number of animals detectable in the 
image (the animals counted manually) (denomi-
nator), presented as a percentage; FN = false neg-
atives; and TP = true positives.

(4)  

False positive over detectable rate = ratio between 
the number of objects wrongly classified as ani-
mals by an automated method (numerator) and the 
number of animals detectable in the image (the 
animals counted manually) (denominator), pre-
sented as a percentage; FP = false positives; FN = 
false negatives; and TP = true positives.

(5)  

Automated count deviation = ratio between the 
sum of animals missed and the objects wrongly 
classified as animals by an automated method 
(numerator) and the animals detectable in the 
image (the animals counted manually) (denomi-
nator), presented as a percentage; FN = false 
negatives; FP = false positives; and TP = true 
positives.

When analyzing the discrepancy between 
manual and automated counts of each frame, dif-
ferent sources of false negatives and false posi-
tives had to be considered in our accuracy met-
rics. Aggregated manatees could be detected as a 
single object, leaving remaining manatees unac-
counted for and, therefore, yielding false nega-
tives. Moreover, at times, the tip of a particular 
segment (small extensions from the main body of 
a segment) could be counted as a separate object 
by the workflow, generating a false positive in 
the automated count (Figure 9). For these rea-
sons, false negatives and positives were grouped 
under diverse criteria: those that were more 
directly related to errors in the classification and 
those that, while not completely unrelated to 
the rest of the processes in the workflow, were 
more directly related to errors in the transition 
from image to vector and counting process of the 
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Figure 8. Main script of the OBIA Florida manatee detection workflow implemented in GEE for testing, along with its four 
functions and their main inputs and outputs

Figure 9. Detail of object IDs from the GEE workflow focused on cases of segment tips being given a different object ID 
(different color) than the main section of the segment. Three cases are indicated with yellow arrows, with upper case with 
green main section and violet tip, lower left case with darker green main section and light violet tip, and lower right case with 
violet main section and red tip.
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workflow. For false negatives, we differentiated 
those that resulted from the classification of a 
manatee as water (misclassification false nega-
tives) and those that resulted from aggregated 
manatees being counted as a single object (merg-
ing false negatives). In the case of false positives, 
we differentiated those that resulted from clas-
sification of, for example, water as a manatee 
(misclassification false positives) and those that 
resulted from tips of segments detected as differ-
ent objects (tips false positives). If there was an 
actual manatee recognized as such that had a tip 
recognized as a separate manatee object, one tip 
false positive was added. If water was recognized 
as a manatee object and one tip was recognized 
as a separate feature, the misclassification false 
positives were increased by one, and the tips 
false positives were also increased by one. Cases 
in which multiple parts of a water segment were 
recognized as different features (concatenated 
tips or a main segment with tips to the side) were 
considered as one misclassification false positive 
and the rest as tips false positives. In the case 
where two manatees were merged as one object 
but a tip (not an entire manatee object itself or 
an object that equated to a considerable part of 
a manatee) was counted as a separate object, the 
merging false negatives were increased by one 
and the tips false positives were also increased 
by one. Finally, if only a section of a manatee or 
just its surrounding waters were detected as such, 
the manatee was counted as a false negative, and 
the object detected as a manatee was counted as 
a false positive.

In concordance with the situations described 
above, the FNR was calculated separately 
for misclassification and all false negatives 
together. The same applied to the misclassifi-
cation false positives and all false positives in 
the case of the FPDR. The ACD was calculated 
for misclassification false positives and false 
negatives, and separately again for all types 
of false positives and negatives. However, 
under the per-frame basis, frames that did not 
have any manatees in the manual count did not 
have any equations calculated for them as this 
would entail a division by zero in the equations. 
Furthermore, these frames would never have 
false negatives. Nevertheless, in these frames, 
records of misclassification and merging false 
positive counts were documented.

Results

In the Video 1 testing dataset, 39 frames of 50 had 
manatees manually counted. The Video 2 testing 
dataset had less manatee presence, with only six 
frames of 50 having manually counted manatees. 

After segmentation, for each testing frame, we 
obtained the classification, the manatees recog-
nized with unique IDs, the manatee features, and 
the markers over each object identified as a mana-
tee (Figure 10). The process to export the clas-
sification in the second function in the testing of 
Video 1 image frames took between 6 h for the 
first of the testing image frames after the classifier 
tree testing to 3 min. For Video 2, processing time 
ranged from 11 h for the first of the testing image 
frames to 3 min. 

For the per-frame results (raw data are avail-
able upon request to the corresponding author), 
in both datasets, the FNR was considerably 
lower compared to the FPDR, regardless of the 
metric being calculated over misclassification 
cases or all cases (Table 2). These metrics mea-
sure error and, therefore, lower results are better. 
As a consequence of the higher FPDR, the ACD 
values responded to the FPDR, while the FNR 
contribution was considerably lower (Table  2). 
Only Video 1 had false negatives, and a compari-
son between misclassification and all false nega-
tives revealed a lower contribution from plainly 
missed manatees compared to manatees missed 
in the count by merging with other manatees in 
a larger object still classified under the manatee 
class. Two frames in which this happened cor-
responded to the close proximity of a mother and 
calf (one case in which both were initially part 
of the same segment and another in which they 
were different segments but merged into one fea-
ture later), with the calf not being a class with 
specific training in the workflow. In both data-
sets, the misclassification false positives were 
most of the false positives, surpassing tips false 
positives, and yielding a comparatively high 
misclassification FPDR compared to the FPDR 
for all false positives. Looking at the frames 
without manually counted manatees (left out 
from the metrics calculations), for the 11 frames 
from the Video 1 dataset, the average number of 
false positives was 21.09 per frame (range: 3 to 
60); while for the 44 frames from the Video 2 
dataset, the false positive average was 10.82 per 
frame (range: 2 to 28). This is congruent with 
the high false positive number reflected in the 
FPDR for the frames with manatees of each 
dataset. Similar trends were also reflected in the 
results on a whole-video basis (Table 3; raw data 
are available upon request to the corresponding 
author). 

Results per frame indicated that FPDR metrics 
for the Video 2 dataset were lower than those of 
the Video 1 dataset; and while it is worth taking 
into account the low number of frames in Video 2 
FPDR calculations, the false positives of the 
frames excluded from metrics calculations show 
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Figure 10. Steps of the OBIA Florida manatee detection workflow implemented in GEE: (a) original frame with manatees 
marked by red arrows; (b) segmentation; (c) classification with segments recognized as manatees in red (including false 
positives), and those recognized as water in blue; (d) objects recognized as manatees with unique object IDs (different 
colors); (e) objects recognized as manatees converted to features; and (f) markers over each feature recognized.

Table 2. Summary of the false negative rate (FNR), false positive over detectable rate (FPDR), and automated count 
deviation (ACD) results calculated on a per-frame basis for the OBIA Florida manatee detection workflow. The table includes 
the number of frames with manatees manually counted per testing dataset, and the FNR, FPDR, and ACD averages for each 
dataset among frames with manatees for misclassification and all false negatives and false positives. The last row shows the 
average between both datasets. Note: Misclassification is abbreviated as “Misc.”

Testing 
dataset

Frames with 
manatees

FNR  
(Misc.)  

(%)

FNR  
(All)  
(%)

FPDR  
(Misc.)  

(%)

FPDR  
(All)  
(%)

ACD  
(Misc.)  

(%)

ACD  
(All)  
(%)

Video 1 39 2.56 8.76 1,072.44 1,263.46 1,075.00 1,272.22

Video 2  6 0.00 0.00  625.00 733.33 625.00 733.33

Average -- 1.28 4.38  848.72 998.40 850.00 1,002.78
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Table 3. Summary of the false negative rate (FNR), false positive over detectable rate (FPDR), and automated count deviation 
(ACD) results calculated on a whole-video basis for the OBIA Florida manatee detection workflow. The table includes the 
FNR, FPDR, and ACD for each dataset for misclassification, and all false negatives and false positives. The last row shows 
the average between both datasets. Note: Misclassification is abbreviated as “Misc.”

Testing  
dataset

FNR  
(Misc.)  

(%)

FNR  
(All)  
(%)

FPDR  
(Misc.)  

(%)

FPDR  
(All)  
(%)

ACD  
(Misc.)  

(%)

ACD  
(All)  
(%)

Video 1 2.41 12.05 989.16 1,171.08 991.57 1,183.13

Video 2 0.00 0.00 5,887.50 6,600.00 5,887.50 6,600.00

Average 1.21 6.03 3,438.33 3,885.54 3,439.54 3,891.57

a similar situation. Sun glint was identified as 
a source of false positives (see Figure S1a & b 
in Supplemental Material 6). Mud plumes (see 
Figure S1c & d in Supplemental Material  6) 
and water close to shore (see Figure S1e & f in 
Supplemental Material 6) also contributed to 
generating false positives. The boat presence in 
the middle of the canal in Video 1 yielded some 
false positives, mostly not due to the boat itself 
but to surrounding waters (see Figure S2 in 
Supplemental Material 6). The FPDR calculated 
for boat-related false positives was 232.05% on a 
per-frame basis (and 196.39% on a whole-video 
basis). Moreover, between the two videos, three 
image frames showed a bird’s presence, which 
in two frames had water segments surrounding 
it recognized as manatees, with a section of the 
bird included as the positive object in one of those 
frames. Segmentation yielded segments that 
included manatees as well as surrounding water 
(see Figure S3 in Supplemental Material 6), and 
segments of water surrounding manatee segments 
could also be classified as positive and integrated 
into a positive feature that included the mana-
tee (see Figure S4 in Supplemental Material 6). 
Examining results calculated on a whole-video 
basis (Table 3), the FPDR metrics were many 
times greater for Video 2 compared to Video 1, 
possibly a result of low numbers of actual mana-
tees in Video 2, while the FPDR values of Video 1 
varied little compared to results on a per-frame 
basis. These changes were reflected in the ACD 
values, and, as a result, the main contributor to 
the total averages of FPDR and ACD was Video 2 
(Table 3). 

As previously mentioned, we calculated the 
average precision and recall for each dataset and 
their total average to compare our results with 
those of these other automated detection studies 
on sirenians on a per-frame and whole-video basis 
(Tables 4 & 5; raw data are available upon request 
to the corresponding author).

Discussion

The results of our workflow show FNRs among the 
lowest compared to other marine mammal auto-
mated detection studies (see Table 1 in Rodofili 
et al., 2022). Comparing our results with those of 
studies using UAS imagery of dugongs, on a per-
frame and whole-video basis, our recall was higher 
than that in both Maire et  al. (2013) and Mejias 
Alvarez et al. (2013). This was while facing some 
common challenges, such as sun glint, animals in 
different positions, and turbidity, although we must 
note our imagery comes from a different environ-
ment (the particular thermal refugia habitat used 
by Florida manatees). Our recalls also surpassed 
those of works using dugong aerial imagery and 
deep learning (Maire et al., 2014, 2015); however, 
our results show a considerable number of false 
positives, with an FPDR revealing false positives 
from approximately 10 to more than 30 times the 
number of visible animals, depending on the basis 
for results calculation. On a per-frame basis, in 
terms of precision, we could see an improvement 
over the results of Mejias Alvarez et al. (2013), but 
our precision was lower than that of Maire et  al. 
(2013, 2014). And, while higher than the first gen-
eration DCNNs in Maire et al. (2015), our preci-
sion was lower than both of their second genera-
tion DCNNs. Our precision on a whole-video basis 
was between the results of Mejias Alvarez et  al. 
(2013)—4.01 and 4.97%. However, our precision 
on a whole-video basis was again lower than that of 
Maire et al. (2013, 2014); and while slightly greater 
than the first generation DCNNs in Maire et  al. 
(2015), our precision was lower than both their 
second generation DCNNs. Our results underscore 
the limitations of our workflow based on OBIA 
and Random Forest given the large number of false 
positives, at least in the context of a limited data-
set. Future studies could explore deep learning as 
these methods have resulted in improved precision 
(Maire et  al., 2014, 2015) while still working on 
improving recalls. Future studies may also employ 
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Table 4. Summary of recall and precision results calculated on a per-frame basis for the OBIA Florida manatee detection 
workflow. The table includes the number of frames with manatees manually counted per testing dataset, and the recall and 
precision averages in their percentual form for each dataset among frames with manatees based on all false negatives and all 
false positives. The last row shows the average between both datasets.

Testing  
dataset

Frames with  
manatees

Recall  
(%)

Precision  
(%)

Video 1 39 91.24 12.26

Video 2 6 100.00 17.28

Average -- 95.62 14.77

Table 5. Summary of recall and precision results calculated on a whole-video basis for the OBIA Florida manatee detection 
workflow. The table includes the recall and precision in their percentual form for each dataset based on all false negatives 
and all false positives. The last row shows the average between both datasets.

Testing  
dataset

Recall  
(%)

Precision  
(%)

Video 1 87.95 6.99

Video 2 100.00 1.49

Average 93.98 4.24

a pixel-based approach. In summary, our results 
illustrate the need for additional studies to improve 
the methodology and to undertake other work-
flows and platforms, especially when it comes to 
decreasing confusion with sun glint, mud plumes, 
and water close to shore. 

The steps taken after classification for an 
automated count of manatees (beyond just their 
detection) also played a key role in contributing 
to false positives and negatives. The kernel was 
selected in preliminary testing to assign aggre-
gated manatees different object IDs so that they 
could be counted separately by the next function, 
and to avoid the same scenario for tips from seg-
ments. Nevertheless, this was not always possi-
ble. The fourth function further complicated the 
delineation of objects to be counted. Although 
the function used the object ID, it was noticed the 
“reduce to vectors” tool employed in said func-
tion (see Supplemental Material 5) only put pixels 
that were adjacent or that were connected diago-
nally (not sharing a side but a corner) into a fea-
ture; elsewhere, they went into separate features. 
As a result, separate but close segments that had 
been given the same object ID by the third func-
tion would be converted into different features 
by the fourth function and counted separately. 
Conversely, while segment tips were part of the 
same segment, if the kernel from the third func-
tion failed to give tips the same object ID as the 
main body of the segment, they were converted 

into separate features and counted separately. 
These aspects of the GEE workflow, for which 
some processes involved an underlying pixel-
basis, added difficulty in the overall transition 
from segment to a counted object and in predict-
ing which setting changes in the workflow might 
yield a more accurate count. We suggest further 
investigation into new workflow alternatives in 
GEE and other platforms that count with a more 
uniform OBIA-underlying logic in all workflow 
processes.

The segmentation yielded clusters correspond-
ing to manatees that also included water, which 
may have impacted workflow accuracy. This 
could occur in the segmentation step during test-
ing and training, affecting the manatee class in 
the resulting training dataset. These observations 
underscore the added complexity of OBIA use in 
the sense of having the additional segmentation 
process beyond the classification. Sometimes 
real-life objects in the image do not match the seg-
ments obtained (Ye et al., 2018). This can make 
it difficult to assess classification accuracy, and it 
also highlights that it may be recommendable for 
future studies to assess segmentation accuracy (Ye 
et al., 2018) and to explore different segmentation 
methods such as those discussed by Maire et al. 
(2015). One possible explanation for false posi-
tives in our workflow could be imperfect segmen-
tation during training. As a result, values of vari-
ables used in the classification from segments that 
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combined manatee and water would have been 
included in the manatee class training, leading to 
recognition of water as manatee objects during 
testing. The cases of segmentation of manatees 
into multiple segments instead of a single one 
could also have affected the workflow’s perfor-
mance by confusing the variables related to shape 
and size (e.g., area, perimeter), with sections of 
a manatee being classified in testing or used in 
training instead of a whole manatee. In relation to 
the last two points on segmentation and the steps 
related to obtaining individual object IDs, it is 
important to emphasize that even within the struc-
ture of the testing script (Figure 8), the errors from 
one function are passed on to the next function. As 
such, it could be beneficial to incorporate steps to 
control for or correct errors between functions in 
future workflows (OBIA or otherwise).

In particular, if we compare the accuracy met-
rics of the two datasets, we notice higher FNR 
and FPDR in the Video 1 testing dataset on a 
per-frame basis, and the opposite on a whole-
video basis for the FPDR, possibly as a result of 
the low number of actual manatees in Video 2. 
While the metrics on a per-frame basis could have 
also been affected by the scarce number of image 
frames that had manatees counted manually and 
were part of the Video 2 averages, the false posi-
tives in frames without manatees (and overall) of 
Video 2 still reflect fewer false detections than 
in Video 1. Therefore, we can at least take into 
account the comparison between the false posi-
tives of both testing datasets and examine possible 
causes. The difference in ground resolutions and 
area recorded, together with the general layout 
of each canal and the land area covered in each 
video, led to a difference in area of analysis, with 
that of Video 1 being more than twice as large. As 
the water class training was standardized to five 
frames per training dataset, this led to the training 
from Video 1 applied on the testing dataset from 
Video 2 having more area of water training, offer-
ing a possible explanation for less false positives 
on the Video  2 testing dataset. The number of 
image frames with manatee presence used for the 
manatee class training was also standardized for 
both training datasets (40 frames) and, given the 
higher density of manatees in Video 1, the training 
derived from that video and applied to the testing 
dataset from Video 2 had 98 manatees compared 
to its counterpart (46 manatees). This suggests the 
training from Video 1 being more extensive in 
manatees as well, offering an additional plausible 
explanation for fewer false negatives and false 
positives in the Video 2 testing dataset. These 
two explanations can be complemented by the 
fact that the testing in Video 2 involved less water 
area in which to have false positives in the first 

place, even though the water training dataset was 
bigger than that of manatees for both videos as the 
entire area of analysis was incorporated for train-
ing in each of the five water training frames. In 
the future, creating training datasets from multiple 
sources may yield more homogenous and better 
results across testing imagery datasets.

While the automated count from our workflow 
was not satisfactory, our workflow produced mark-
ers over each detection that maintain their size 
as zooming out, allowing the user to locate and 
examine each detection to remove false positives. 
Therefore, a semi-automated use of the work-
flow by having automated detection and a manual 
revision of the positives assisted by the mark-
ers is a viable alternative, especially since most 
workflow errors were false positives with a few 
missed animals (for the misclassification fraction 
of these, the markers would not be able to help). 
Semi-automation has been useful in reducing 
analysis time in the past (e.g., Thums et al., 2018). 
Furthermore, false negatives mostly occurred due to 
merging of various manatees into one detection as 
opposed to misclassification false negatives. This 
would also support the semi-automation approach 
in the sense that merging false negatives can be 
spotted during review because they still correspond 
to a detection and have a marker assigned to them. 
The advantages of this semi-automated use of the 
workflow would be more evident in the context of a 
satellite image or a UAS orthomosaic for which the 
markers allow for a quick review in particular areas 
without having to inspect the large extent of such 
images manually. The initial manual review of all 
imagery to obtain a count against which to measure 
the workflow accuracy was done by one person, 
with zooming options in GEE because of the lim-
ited extent of each image and the limited number of 
images in our study. However, we still consider this 
a limitation of our study. Moreover, in the context 
of a UAS orthomosaic and satellite images, human 
error could be more considerable, and it would be 
worth having more researchers to achieve a con-
sensus count (e.g., Gonçalves et al., 2020) or to get 
multiple manual counts to obtain an estimate of an 
error rate in manual counts that may be incorporated 
into the rest of the analysis to carry through the 
uncertainty. This approach could be used in future 
workflows for the full manual revision of imagery 
to test their accuracy or in the manual counts of a 
semi-automated use of such workflows.

We also acknowledge that our GEE workflow 
would need improvements in its code or in GEE’s 
processing speed to become a more effective, 
time-saving tool. The classification of different 
image frames showed a reduction in time as more 
image frames were processed, with those follow-
ing the initial testing image frame generally taking 
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minutes. However, the first image frames took 
hours for a small area, and it was the case that some 
image frames after the initial one could take hours 
again. Including training data from image frames 
could also take hours, and the testing of different 
numbers of trees for the Random Forest classifier 
took several hours as well. It is possible our work-
flow could yield a better time-to-analyzed-area 
performance if used in UAS orthomosaics and 
satellite images, which is arguably a target that 
automated detection of marine mammals pursues 
in the end but that remains to be tested. GEE also 
has limitations in time and memory when the user 
runs a particular workflow (Google Earth Engine, 
2022), which could indeed occur when running 
our workflow over larger areas. However, code 
improvements could be implemented to avoid 
reaching time and memory limits (Google Earth 
Engine, 2022); and GEE itself, in the future, may 
have improvements to address these situations. 

This study aimed to utilize stationary video 
footage for training and testing with manatees in 
different postures and levels of submersion for 
automatic detection. Our results on Florida mana-
tees contribute to the field of marine mammal auto-
mated detection in remote sensing imagery—first, 
by evaluating a species that has had less attention 
and is in the challenging environment of turbid 
waters; second, by using an approach that is less 
explored in marine mammal detection: OBIA 
(Rodofili et al., 2022); and lastly, by exploring 
the capabilities of a free platform instead of paid 
software for image analysis (e.g., ArcGIS, eCogni-
tion). In the future, we recommend Florida manatee 
researchers and conservation managers improve 
this workflow by incorporating further training 
or modifying the code and testing it on images of 
aggregated manatees, or on UAS orthomosaics that 
cover larger areas where manatees are more widely 
distributed. As mentioned in Rodofili et al. (2022), 
these workflows are concerned with the automated 
detection of marine mammals in imagery to obtain 
animal counts as a first step. Given our results, a 
semi-automated approach could aid in clearing the 
counts from false positives from the workflow as 
a second step. Moreover, counts could potentially 
be corrected for false negatives from more FNR or 
recall estimates from other workflow evaluation 
studies such as this one. Further steps are needed 
after counts to calculate abundance or density esti-
mates over extended areas such as making adjust-
ments for submerged animals not shown in the 
imagery—animals available in the study area but 
not at the surface (i.e., not detectable) as has been 
implemented for whale densities calculated from 
satellite imagery (e.g., Bamford et al., 2020). These 
adjustments could involve additional information 
obtained through tracking devices such as surfacing 

and submersion times (e.g., Bamford et al., 2020). 
In their abundance estimation of Florida manatees 
in 2015-2016 from crewed aerial surveys, Hostetler 
et  al. (2018) used a method described by Martin 
et  al. (2015) that involved the detectability of a 
manatee replica at 0.5-m increments of submersion 
and visibility categories for different sites. Martin 
et al. (2015) also incorporated information on man-
atee diving behavior from telemetry and time-depth 
data to account for submerged animals. 

This study also used imagery derived from 
stationary video for workflow training and test-
ing with manatees in different postures and 
levels of submersion. However, if imagery over 
the same position was aimed for use in abun-
dance or density estimates, accounting for detec-
tion of the same manatee would be important 
(e.g., Edwards et al., 2021). In consonance with 
an application of automated detection workflows 
to larger areas of Florida manatee habitat, we 
recommend the inclusion of object classes that 
acted as confounding objects in our study, such 
as birds, boats, mud plumes, water by the shore-
line, sun glint, and manatee calves. The inclusion 
of boats, together with the capability to recog-
nize land, would aid in the application to larger 
areas. Exploring other free platforms for OBIA, 
like R, and investigating if accuracy and pro-
cessing time can be improved to make OBIA an 
effective and accessible tool for Florida manatee 
researchers and conservation managers is recom-
mended. Furthermore, deep learning has shown 
promise for marine mammal automated detection 
(Rodofili et al., 2022) and, as we have seen from 
Maire et al. (2014, 2015), continuing to explore 
free platforms for deep learning workflows is 
encouraged. In conclusion, as UASs are used 
more in marine mammal surveys for their cost 
and logistical advantages, detection and count 
workflows have the potential to become a useful 
time-saving tool in marine mammal research and 
conservation programs.

Note: The supplemental materials for this article are 
available in the “Supplemental Material” section of 
the Aquatic Mammals website: https://www.aquatic-
mammalsjournal.org/supplemental-material.
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