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Short Note
Largest Mortality Event to Date of California Sea Lions in  

Mexico Might Be Linked to a Harmful Algal Bloom
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We report a California sea lion (CSL; Zalophus cal- 2015-2016 El Niño (Elorriaga-Verplancken et al., 
ifornianus) massive mortality event that occurred 2016; Pelayo-González et al., 2021a).
in the western region of the Baja California pen- Other oceanographic and environmental phe-
insula, Mexico, in late summer 2020 and analyze nomena also threaten CSL abundance. For exam-
its relationship with a harmful algal bloom (HAB) ple, HABs along the California coast have been 
through the use of satellite images. The assess- found to cause strandings and unusual mortal-
ment of this kind of event is of high importance ity events (UMEs) of CSLs (e.g., Scholin et al., 
given the lack of information at these latitudes. 2000; Gulland et al., 2002). Other pinnipeds from 
It represents a unique opportunity to increase our that region, such as the harbor seal (Phoca vitu-
knowledge regarding the threats to which CSLs are lina richardii), have also been affected (McHuron 
exposed—especially in light of the decline in CSL et al., 2013). Environmental factors that could 
abundance in different areas of its Mexican distri- exacerbate these events include oceanographic 
bution (Elorriaga-Verplancken et al., 2016; Adame regime changes, ballast waste discharge, pollu-
et al., 2020; Pelayo-González et al., 2021b). tion, reduced oxygen availability, increased riv-

The CSL is distributed throughout the northeast- erine nutrient run-off, eutrophication, and climate 
ern Pacific and Gulf of California (GC; Aurioles- change (Anderson, 1997; Landsberg, 2002; Chávez 
Gamboa & Zavala, 1994). In Mexico, the CSL popu- et al., 2003; Glober, 2020). During a HAB, marine 
lation is estimated at 70,000 to 75,000 individuals, algae produce domoic acid, a potent neurotoxin 
of which ~15,000 inhabit the GC (Adame et al., (Iverson & Truelove, 1994) that causes multiple 
2020) and ~60,000 inhabit the western coast of the disorders and signs of illness in CSLs, including 
Baja California peninsula (Milanés-Salinas, 2012). epilepsy, seizures, ataxia, head weaving, decreased 
However, the CSL population has declined by ~65% responsiveness to stimuli, and scratching behaviors 
in the GC from 1991 to 2019 due to increases in sea (Gulland et al., 2002; Buckmaster et al., 2014).
surface temperature that exerted effects on the tro- The impact of HABs on the wildlife of the north-
phic dynamics of the region (Adame et al., 2020; eastern Pacific was first reported in 1991 follow-
Pelayo-González et al., 2021b). Moreover, a recent ing a high mortality of brown pelicans (Pelecanus 
decline in CSL abundance has been reported along occidentalis; Work et al., 1993). Similar effects 
the western coast of the Baja California peninsula, on marine mammals were recorded in 1998 when 
which has been associated with the presence of the a bloom of Pseudonitzschia australis, known to 
anomalous warm water mass in the North Pacific produce domoic acid, was deemed to have caused 
(known as “The Blob”) that was exacerbated by the the deaths of 48 CSLs that had washed up on the 
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California coast (Scholin et al., 2000). A simi- 2013, only 64 ± 21 CSLs per year were reported to 
lar event was linked to the deaths of 81 CSLs in have been intoxicated by domoic acid in this region, 
California in 2000 (Gulland et al., 2002). while more than 200 CSLs were intoxicated yearly 

Since then, HABs have become regular events, from 2014 to 2015 (McCabe et al., 2016).
and their toxic effects have been recorded in In contrast to the ample amount of published 
California waters (Walz et al., 1994; McCabe et al., information regarding CSL mortality linked to 
2016). Moreover, the overall frequency of HABs HABs for the California coast, little information is 
has intensified in recent decades, in part because of available for the Mexican coasts. In the GC and in 
climate change (Hinder et al., 2012; Glober, 2020). the Mexican Pacific, Pseudonitzschia HABs have 
One driver of ocean warming is the accumulation of been documented (Gárate-Lizárraga et al., 2007; 
atmospheric CO2, which enters the ocean and acidi- García-Mendoza et al., 2009) and found to be asso-
fies its surface (Doney et al., 2009). Dinoflagellates, ciated with mortality of seabirds in Cabo San Lucas 
which are responsible for the majority of HABs, (Sierra-Beltrán et al., 1997) and marine mammals, 
have a greater affinity for conditions of elevated including more than 150 dolphins and nine CSLs in 
CO2 compared to those of other algae (Reinfelder, Sinaloa in 1997 (SEMARNAP-PROFEPA, 1997), 
2011). The connection between anomalous oceano- and 112 dolphins and 195 CSLs in Sonora in 2004 
graphic conditions and the presence of HABs was (Gallo-Reynoso et al., 2005). In 2002, the strand-
reported in spring 2015 when high concentrations of ing of 87 dead CSLs on the western coast of the 
domoic acid were found along the western coast of Baja California peninsula between Tijuana and 
the United States, causing several fisheries to cease Ensenada was assumed to have been caused by a 
operations, and resulting in multiple stranding events HAB (Hernández-Becerril et al., 2007), although 
involving pinnipeds and cetaceans. From 2010 to this could not be tested conclusively.

Figure 1. Sites throughout the western region of the Baja California peninsula in which stranded dead California sea lions 
(Zalophus californianus) were recorded
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In this study, we address the relationship 
between a HAB and a CSL massive mortality 
event that occurred in the western region of the 
Baja California peninsula (Figure 1). Taking place 
from approximately 28 August to 4 September 
2020, this mortality event included 447 CSLs 
spanning the western region of the Baja California 
peninsula. Counts of dead animals were made by 
the authors of this work or local authorities. Where 
possible, size (length between nose and tail), sex, 
and age class were recorded. The highest con-
centration of stranded dead CSLs was recorded 
in Cabo San Lázaro (Isla Magdalena) and Bahía 
Asunción (Table 1). At least 15 dead CSLs were 
recorded in the San Benito Archipelago during 
November 2020; however, due to their advanced 
degree of decomposition, it was assumed that 
they were part of the massive mortality event of 
September 2020.

We obtained normalized fluorescence line 
height (nFLH) data from the MODIS-Aqua plat-
form with a temporal and spatial resolution of 1 mo 
(i.e., August and September 2020) and 4 × 4 km, 
respectively, to define if a HAB occurred in the 
area during the study period (Hu et al., 2015; Hu 
& Feng, 2016). These data were obtained from the 
National Aeronautics and Space Administration 
(NASA) website (https://oceancolor.gsfc.nasa.gov/
l3) and were used to draw a polygon that included 
the western region of the Baja California peninsula.

From the image of the monthly average 
for August 2020, nFLH values greater than 
0.25  W  m-2 µm-1 sr-1 were observed from Punta 
Eugenia to Laguna San Ignacio, evidencing high 
primary productivity in the region. In contrast, 
the image of the monthly average for September 
2020 indicated that lower primary productivity 
was present compared to that of August 2020, 
with values below 0.25 W m-2 µm-1 sr-1 (Figure 2). 
Since no phytoplankton samples were taken in the 
area during these 2 mo, it was not possible to cor-
roborate toxicity linked to these algal blooms. It 
was only possible to assume that these events took 
place. However, the average monthly conditions 
in September 2020 differed from those in the pre-
vious month. The notable conditions for August 
2020 must have had an effect towards the end of 
this month and early September. 

The sex and age class of the CSLs stranded 
were similar among sites. In Cabo San Lázaro, the 
age-class structure was determined with greater 
precision compared to those of the other sites 
where only overall counts and photographs were 
provided by local authorities. Most individuals 
stranded in Cabo San Lázaro were subadult males 
(~91%), followed by adult males (~7%) and juve-
niles (~2%). Subadult and adult male CSLs were 
identified based on their developed sagittal crests 

Table 1. Number of dead California sea lions (Zalophus 
californianus) recorded along the western coast of the 
Baja California peninsula from the end of August to the 
beginning of September 2020

Site
Number of  

California sea lions

San Benito 15
Guerrero Negro 2
Bahía Tortugas 2
San Roque-Bahía Asunción 80
Bahía Asunción 123
San Hipólito 5
La Bocana 2
La Bocana-Punta Abreojos 14
Punta Abreojos 7
El Dátil 2
San Juanico 21
Cabo San Lázaro/Isla Magdalena 137
Isla Santa Margarita 37
Total 447

and large necks (although these are less developed 
in subadult males), their darker pelage, and their 
larger size (2.0 to 2.5 m for male subadults and 
2.4 to 2.6  m for male adults) than adult females 
or juveniles (Lluch-Belda, 1969; Orr et al., 1970; 
Elorriaga-Verplancken et  al., 2018). No evidence 
of poor body condition or traces from fishing nets 
or from any other anthropic interactions were 
observed that could be related to the UME.

Cabo San Lázaro was the area where most CSLs 
stranded (137 individuals; Table 1). This site is rec-
ognized as one of the areas where more strandings 
of marine mammals occur throughout the year, 
both in Mexico and in the U.S. (Mercuri, 2007). 
Cabo San Lázaro on Isla Magdalena is located 
within a highly productive temperate-tropical 
transition zone, which supports a high abundance 
and diversity of temperate and tropical species 
(Lluch-Belda, 2000; Lluch-Belda et  al., 2003). 
The coastline of the Gulf of Ulloa and especially 
of Isla Magdalena promotes the deposition of 
dead marine animals, particularly CSLs, due to the 
area’s currents and circulation patterns (Mercuri, 
2007). It is not known where these animals come 
from, although they are believed to belong to the 
closest colony on Santa Margarita Island (~75 km 
south of Cabo San Lázaro) (Ascencio, 2010). This 
colony presents an abundance of 1,000 to 1,300 
individuals (Pelayo-González et al., 2021a). The 
unusual stranding of CSLs in 2020 was considered 
to be an anomaly when compared to the magnitude 
of previous stranding events in the same location 
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Figure 2. Average monthly values (W m-2 μm-1 sr-1) for August (upper map) and September (lower map) 2020 (normalized 
fluorescence line height [nFLH])
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Figure 3. Number of California sea lions stranded per year at Cabo San Lázaro (Isla Magdalena). The column for 2020 is 
divided between the massive mortality event registered between the end of August and the beginning of September (light 
gray area) and the total number of strandings before the massive event (gray area).

(Cabo San Lázaro; Figure 3), which has been sur- presented a similar degree of advanced decomposi-
veyed annually by one of the co-authors (CJH-C) tion (Figure 4), which may indicate that these indi-
of this short note. viduals fed on similar domoic acid-contaminated 

Although CSLs were the most common species items, possibly 10 to 15 d before the end of August 
found in the UME, other species were also affected and the beginning of September 2020 when they 
in the region. For instance, based on information stranded. Additionally, almost all dead individuals 
provided by local authorities, a high number of were subadult males, which suggests that these ani-
dead clams was observed along 10 km of the coast mals fed in an area that was mostly used by this 
of Cabo San Lázaro, and multiple dead fish and age class. In this regard, feeding niche segregation 
ray species were recorded in Bahía Asunción and between CSL sex and age classes has been previ-
in sites to the north of this area around the same ously documented in Isla Santa Margarita in Bahía 
dates. In addition, at least ten dead harbor seals Magdalena (Elorriaga-Verplancken et al., 2013). 
were recorded in Bahía Asunción. Moreover, this type of segregation has been found 

Our documentation of the UME of CSLs during between subadult males and adult females from 
August and September 2020 highlighted simi- the western region of the Baja California penin-
larities to previous mortality events that have been sula using stable isotopes, with subadult males 
linked to domoic acid poisoning from HABs. showing both a higher trophic position and a wider 
These reports have also included an unusually isotopic niche compared to those of adult females, 
high number of dead CSLs and a high degree of which suggests that males feed across a larger area 
synchrony among strandings (e.g., Gulland et al., (Elorriaga-Verplancken et al., 2018). Nonetheless, 
2002; Gallo-Reynoso et al., 2005; McCabe et al., we recognize that the region in which the mortal-
2016). Additional patterns regarding the CSL ity of August and September 2020 was recorded 
stranding event of 2020 were also consistent with was very wide, covering approximately 4° of lati-
domoic acid poisoning. Practically all dead CSLs tude (nearly 500 km). Thus, it is possible that an 
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Figure 4. Stranded dead California sea lions recorded at Cabo San Lázaro (Isla Magdalena) (Photo credit: FRE-V)

unknown proportion of CSLs within this massive affected mostly adult and subadult males, and an 
mortality event may have belonged to other sex and outbreak of leptospirosis would be expected to affect 
age classes. other sex and age classes (Lloyd-Smith et al., 2007). 

Even though almost 450 CSLs were reported 
dead, this amount is likely underrepresenting the Final Remarks
true number of dead animals as it includes only To date, this is the largest CSL mass mortality 
those animals that stranded and were documented. event ever recorded in Mexico, highlighting the 
An unknown number of individuals may have died unprecedented impact that HABs could have 
at sea and not reached land, while others may have along the western coast of the Baja California 
stranded in inaccessible or uninhabited locations peninsula. The CSL population in this region 
that are common in many areas of the peninsula. is already known to be in decline due to warm 

We were unable to collect phytoplankton samples oceanographic anomalies, such as El Niño events 
to determine the toxicity of the HAB nor did we and the Blob, which have negatively impacted 
manage to collect samples of the dead CSLs given the their feeding habits, as well as the body condi-
high degree of decomposition and empty stomachs; tion (Elorriaga-Verplancken et al., 2016) and 
however, the timing of the HAB event in relation immune competence of their offspring (Banuet-
to the UME makes it likely that this was the cause. Martínez et al., 2017). Although it is not pos-
We were able to run histopathology analyses on two sible to determine the causes and intensity of 
kidney samples collected from fresh CSL corpses. this HAB, there is a connection between these 
The kidneys showed degeneration of the renal tubules, blooms and warming/eutrophication events 
moderate congestion, and no evidence of regenera- (Glober, 2020), the frequency of which have 
tion. While these lesions could be compatible with increased in recent decades in the Pacific Ocean 
leptospirosis (Gulland et al., 1996), given that there (Gentemann et al., 2017; Freund et al., 2019). 
has never been any reported outbreak of leptospirosis Thus, it is necessary to continue tracking HABs, 
in the CSL populations in Mexican waters and that the frequency with which they occur, their rela-
serological studies have shown significantly lower tionships with climate change, and their effects 
antibody titers as well as the presence of enzootic on ecosystems to properly describe potential 
Leptospira serovars in these animals (Avalos-Téllez threats to the CSL population throughout its 
et al., 2016), it is unlikely that leptospirosis would distribution in the northeastern Pacific. Finally, 
be the cause of the UME. Furthermore, this event we acknowledge the importance of collecting 
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fresh samples or stomach contents from these M., Suzán, G., & Suárez-Güemes, F. (2016). Pathogenic 
events, when they are available, to form more Leptospira serovars in free-living sea lions in the Gulf 
solid conclusions regarding the causes of death of California and along the Pacific coast of the Baja 
of affected individuals. California coast of Mexico. Journal of Wildlife Diseases, 
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