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Abstract Introduction

Information concerning population structure and Stenella clymene, the Clymene dolphin, has a 
genetic diversity in Stenella clymene is still scarce. restricted distribution near the equator in the 
Previous studies raised questions regarding the Atlantic Ocean (Jefferson & Curry, 2003). 
species’ position in the genus Stenella and sug- Considered an oceanic species, it is commonly 
gested that S. clymene might be of hybrid origin. found in deep waters (1,000 to 4,500 m), with 
The present study analyzed the mitochondrial cyclonic or confluent circulation (Davis et al., 
control region (D-loop), cytochrome oxidase I 1998; Weir, 2006), feeding typically on mesope-
(CoI), and cytochrome b (Cyt b) of northeast- lagic fishes (Jefferson & Curry, 2003). There are 
ern Brazil individuals and compared them with reports of significant habitat overlap of S. clymene 
S. clymene sequences from the North Atlantic with other Stenella sp.—for example, S. attenu-
Ocean and Gulf of Mexico. Brazilian individuals ata, S. coeruleoalba, and S. longirostris (Davis 
showed high haplotype diversity (D-loop: 1.00/p et al., 1998; Moreno et al., 2005).
= 0.02; CoI: 0.99/p = 0.04; Cyt b: 0.96/p = 0.06) According to the International Union for 
and probably constitute one population (South Conservation of Natureʼs (IUCN) (2016) Red List 
Atlantic Ocean). Significant differentiation and of Endangered Species, S. clymene is under the 
high F  values (D-loop: F = 0.88/p = 0.00; CoI: “Data Deficient” (DD) classification due to the 
FST = 0.70/

ST

p = 0.00; Cyt b: F
ST 

ST = 0.96/p = 0.00) lack of studies focusing on the species. It is uncer-
were found between population units from the tain how many populations or stocks of S. cly-
North and South Atlantic Ocean. For Cyt b, popu- mene exist, and there is no information regarding 
lation units from the South Atlantic Ocean and its population structure and diversity overall.
Gulf of Mexico showed significant differentia- The phylogenetic position of the Clymene dol-
tion, but the F  value was low (F = 0.11/p = 0.0). phin in the Stenella genus and in the Delphinidae 
In addition, the haplotype 

ST

network suggests con
ST 

- subfamily remains uncertain. In most studies, the 
nectivity between South Atlantic Ocean and Gulf closest species to S. clymene is S. coeruleoalba, 
of Mexico units. More effort focusing on S. cly- followed by S. frontalis (Perrin et al., 2013), but 
mene is needed to better elucidate the patterns of Delphinus seems to be closer to S. clymene than 
population structure within this species and, thus, S. attenuata and S. longirostris would be (Perrin 
provide sufficient data for conservation strategies. et al., 2013). Furthermore, Amaral et al. (2014) 

hypothesized that S. clymene originated from a 
Key Words: D-loop, cytochrome oxidase I,  hybridization between S. longirostris and S. coe-
cytochrome b, Clymene dolphin, Delphinidae ruleoalba, as well as the possibility of S. clymene 
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being a recent introgression between S. clymene mammalsjournal.org/index.php?option=com_ 
and S. longirostris. content&view=article&id=10&Itemid=147).

Analyses of existent polymorphisms in DNA The D-loop control region was amplified fol-
sequences between individuals of different locali- lowing Pichler et al. (2001), with primers dLp1.5 
ties allow for the exploration of evolutionary pro- (5ʼ TCACCCAAAGCTGRARTTTA 3ʼ) and 
cess and demographic events of a species (Nosil dLp5 (5ʼ CCATCGWGATGTCTTATTTAA-GR 
et al., 2009). However, for this species, molecular GGAA 3ʼ); and reactions were performed in 12.5 μl 
studies have been difficult as sightings and strand- volumes containing 10 to 100 ng of extracted DNA, 
ing events are sporadic due to the distribution 10x PCR buffer (Invitrogen), 2 mM MgCl , 0.12 μM 
of S. clymene in the deep waters of the Atlantic of each primer, 0.05 mM dNTP, and 1U/

2

μl Taq 
Ocean. Because most samples available are from polymerase (Invitrogen). The thermocycle profiles 
stranded individuals, analyses of mitochondrial consisted of an initial denaturation step at 95° C for 
DNA have been preferred due to its success in 1 min, 40 cycles of 94° C for 30 s, 54° C for 30 s, 
low-quality DNA analyses such as that found in and a final extension step at 72° C for 5 min. The 
samples from stranded individuals (Wan et al., cytochrome oxidase I (CoI) gene was amplified fol-
2004; Frankham et al., 2008). lowing Amaral et al. (2007a), with primers COX1F 

The aim of this study was to provide initial (5ʼ TGCCTACTCGGCCATTTTAC 3ʼ) and 
information about the genetic diversity and popu- COX1R (5ʼ TGAAACCCAGGAAGCCAATA 3ʼ). 
lation structure of S. clymene by comparing the Amplification reactions were performed in 12.5 μl 
diversity among individuals from the South and volumes containing 10 to 100 ng of extracted 
North Atlantic Oceans. DNA, 10x PCR buffer (Invitrogen), 1.5 mm MgCl , 

0.15 mm dNTPs, 0.3 μm of each primer, and 1 U/
2

Methods μL Taq polymerase. The thermocycle profiles con-
sisted of an initial denaturation step at 94° C for 

Samples 2 min, followed by 35 cycles of 45 s at 94° C, 45 s at 
Samples were collected from 12 individuals 52° C, 1 min at 72° C, and a final extension step for 
(seven male and four female) that stranded in 8 min at 72° C. The cytochrome b (Cyt b) gene was 
northeastern Brazil (Figure 1). The conditions of amplified using primers described in Palumbi et al. 
the individuals ranged from fresh to an advanced (1991): 5ʼ TGACTTGAARAAC CAYCG TTG 3ʼ 
stage of decomposition. Tissues were collected and 5ʼ CCTTTTCCGGTTTACAAGAC 3ʼ. Am- 
according to the decomposition stage: muscle plification reactions were performed in 12.5 μl 
and skin were obtained from fresh carcasses and volumes containing 10 to 100 ng of extracted DNA, 
stored in ethanol, while internal organs were col- 10x PCR buffer (Invitrogen), 1.52 mM MgCl2, 
lected from carcasses with an advanced stage of 0.3 μM of each primer, 0.04 mM dNTP, and 1 U/
decomposition and stored in formaldehyde. μl Taq polymerase (Invitrogen). The thermocycle 

Additionally, to perform a broader analysis profiles for the Cyt b gene consisted of an initial 
of S. clymeneʼs relationship within the genus, denaturation step at 94° C for 3 min, followed by 
we included sequences from other Stenella sp. 35 cycles of 45 s at 94° C, 45 s at 48° C, 1 min at 
from GenBank (Figure 1; Table S1—This table 72° C, and a final extension step for 5 min at 72° C. 
is available in the supplementary material for The mitochondrial genes were purified with 
this article on the Supplementary Material page Exonuclease I (10 u/μl), Shrimp alkaline phos-
of the Aquatic Mammals website: www.aquatic phatase (1 u/μl), and Exo/Sap (1/1). They were 
mammalsjournal.org/index.php?option=com_ incubated for 15 min at 37° C and 15 min at 
content&view=article&id=10&Itemid=147). 80° C. Sequenced reactions were performed with 

1 μl of PCR product, 5.06 μl of ultrapure water, 
DNA Extraction, Amplification, and Sequencing 2.5 μl of buffer, 0.8 μl of BigDye Terminator 
Different DNA extraction protocols were used CycleSequencing (Applied Biosystems), and 
according to the tissue type and storage solu- 0.64 μl of primer (5 μM) for both strands, forward 
tion: salt buffer protocol (Bruford et al., 1992) and reverse. The thermocycle profiles consisted of 
was used for muscle; Chelex resin protocol was an initial denaturation step at 96° C, followed by 25 
used for skin; a phenol-chloroform protocol cycles of 10 s at 96° C, 5 s at 48° C, and 4 min at 
(Sheppard et al., 1992) was used for degraded 60° C. To precipitate the DNA, we added 80 μl of 
tissue; and Mesquita et al.’s (2001) protocol isopropyl alcohol (75%), centrifuged at 13,000 rpm 
was applied with adaptations for tissues pre- for 25 min, and discarded the supernatant. The 
served in formaldehyde (see “DNA Extraction pellet was washed with 250 μl of ethanol (70%) 
Protocol . . .” in the supplementary material for being centrifuged at 13,000 rpm for 5 min. The 
this article on the Supplementary Material page supernatant was discarded, and the pellets were 
of the Aquatic Mammals website: www.aquatic dried on the thermocycler for 3 min at 95° C. The 



509Stenella clymene Population Structure and Genetic Diversity

Figure 1. Locations where Stenella clymene samples were obtained on the Brazilian coast, as well as the sequences available 
from GenBank

samples were sequenced on an ABI310 automated For an insight into S. clymeneʼs relationship 
sequencer (Applied Biosystems). to its genus, we included GenBank sequences of 

other Stenella sp., for both CoI and Cyt b, to esti-
Data Analyses mate a species tree of the genus. As outgroups, 
All DNA sequences were aligned using the algo- we used sequences from Megaptera novaeangliae 
rithm MUSCLE (Robert, 2004) and manually (Borowski, 1781) (GenBank AP006467 for CoI 
edited in the software MEGA, Version 6 (Kumar and Cyt b) and Pontoporia blainvillei (Gervais 
et al., 1994; Tamura et al., 2013). To confirm the & d’Orbigny, 1844) (GenBank EU496358 for 
species, sequences were compared with GenBank CoI and GenBank AF334488 for Cyt b). We only 
and DNA Surveillance (Ross et al., 2003) included sequences that had a reference article 
databases. submitted (see Table S1).

Population structure analyses were conducted, The best evolutionary model for each mito-
and estimates of haplotype (H) and nucleotide chondrial gene region was obtained through the 
(π) diversity were obtained using the software JModeltest, Version 2.1.6 program (Guindon & 
Arlequin, Version 3.5 (Excoffier et al., 2005). Gascuel, 2003; Darriba et al., 2012), using the 
Genetic differences among population units (North Akaike information criterion (AIC) test. To esti-
Atlantic Ocean, South Atlantic Ocean, and Gulf of mate a species tree of the genus Stenella, 10 mil-
Mexico) were quantified by Analysis of Molecular lion Monte Carlo Markov Chain (MCMC) genera-
Variance (AMOVA) based on conventional FST tions sampling every 1,000 generations were run 
statistics with 10,000 random permutations using in the program BEAST, Version 1.8.1 (Drummond 
the Arlequin software. Haplotype networks were et al., 2012); the evolutionary model applied 
constructed using Median-Joining calculations as for both CoI and Cyt b was HKY + G, with the 
implemented in Network (Bandelt et al., 1999). Yule process as the species tree prior and a strict 
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molecular clock with an uncorrelated lognor- (p = 0.00). For Cyt b, the F
mal distribution. , Version 1.8.1 and SAO (F = 0.96/ = 0.00) and between NAO

ST values between NAO 
TreeAnnotator p  

(Drummond et al., 2012) was subsequently used and GOM (F
ST 

to summarize the obtained trees in a single tree, between SAO and GOM (F
ST = 0.93/p = 0.00) were higher than 

= 0.11/p = 0.00).
with a maximum clade credibility, a burning value Haplotype networks support the results of dif

ST 

fer-
of 1,000, and a posterior probability limit of 0.5. entiation between individuals from the northern and 
FigTree,Version 1.4.3 (Rambaut, 2009) was used southern localities of the Atlantic Ocean (Figure 2). 
to edit and produce the tree figures. Note that for Cyt b, despite SAO and GOM being 

separated, there were individuals maintaining a 
Results connection between these populations.

As for the phylogenetic tree, in Figures 3 and 4, 
For all mitochondrial regions, AMOVA and genetic for both CoI and Cyt b, the closest species to S. cly-
distance results showed no significant genetic mene is S. coeruleoalba followed by S. frontalis. 
differentiation between individuals from differ- For CoI, we have a strongly supported clade for 
ent locations in Brazil (D-loop: FST = -0.29/p = S. clymene, but individuals SAO03 (KX346587) 
0.9; CoI: FST = -0.25/p = 0.7; Cyt b: FST = 0.25/p = and SAO05 (KX346585) are clustered isolated 
0.12); therefore, these individuals were considered outside any clade, including S. clymene (Figure 3). 
as a single South Atlantic Ocean (SAO) popula- We also have a supported clade for S. clymene for 
tion. GenBank sequences included for D-loop and Cyt b. Again, the individual SAO05 (KX346595) 
CoI were all described as a North Atlantic Ocean is outside the clade, but now it is clustered with the 
(NAO) population. For the D-loop, both SAO and S. clymene individual KF691995 from the GOM 
NAO showed high haplotype and nucleotide diver- (Figure 4). In addition, the S. clymene individ-
sity. As for CoI, both SAO and NAO presented ual KF691958 from the GOM is clustered in the 
high haplotype diversity, but the NAO had lower S. longirostris clade (Figure 4).
nucleotide diversity when compared to SAO (Table 
1). Discussion

As we included the GenBank sequences for 
Cyt b, AMOVA and genetic distance results con- Even with a low sample size, the haplotype and 
sidering all GenBank sequences as one population nucleotide diversity of S. clymene were rela-
unit showed higher intrapopulation distance (F  = tively high for all molecular markers and geo-
0.92/p = 0.04) than interpopulation distance (F

ST

 graphic localities evaluated as found in previous 
= 0.08/p = 0.04). Thus, for Cyt b analyses, we 

ST

Delphinidae studies (Natoli et al., 2005; Adams 
considered NAO and the Gulf of Mexico (GOM) & Rosel, 2006; Amaral et al., 2007b; Quérouil 
as separate population units. For Cyt b, SAO and et al., 2007; Caballero et al., 2013; Stockin et al., 
NAO exhibited higher nucleotide diversity when 2014).The high haplotype diversity together with 
compared to GOM, while NAO and GOM had the low nucleotide diversity found in CoI for NAO 
similar haplotype diversity that was higher than individuals and in Cyt b for SAO individuals may 
SAO (Table 1). be an indication of genetic bottleneck events fol-

AMOVA results were significant for all mito- lowed by population expansion. Generally, the hap-
chondrial genes: D-loop, FST = 0.88 (p = 0.00); lotype network has a star pattern, which supports 
CoI, FST = 0.70 (p = 0.00); and Cyt b, FST = 0.86 more clearly the hypothesis that new haplotypes 

Table 1. Sample size (N), base par (Bp), polymorphic sites (Ps), haplotype diversity (H), and nucleotide diversity (π) of 
Stenella clymene in the Atlantic Ocean; SA = South Atlantic, NA = North Atlantic, and GOM = Gulf of Mexico.

N Ps H π

D-loop (400 bp) SA 8 14 1.0 ± 0.02 0.02 ± 0.01

NA 14 24 1.0 ± 0.02 0.02 ± 0.01

CoI (636 bp) SA 10 44 0.99 ± 0.04 0.0234 ± 0.1

NA 3 4 1.0 ± 0.27 0.0042 ± 0.01

Cyt b (783 bp) SA 9 19 0.97 ± 0.06 0.006 ± 0.03

NA 3 11 1.0 ± 0.27 0.0112 ± 0.001

GOM 12 51 0.83 ± 0.08 0.0128 ± 0.007
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Figure 2. S. clymene haplotype network for mtDNA regions D-loop (A), CoI (B), and Cyt b (C). Circle diameter is 
proportional to relative frequency of haplotypes; numbers within the lines represent mutational step numbers. 
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Figure 3. Species tree estimated for CoI with the BEAST method. Posterior probability values are above nodes.

apparently recently diverged from a single ances- only one mutational step between some SAO and 
tral haplotype. A similar hypothesis has been pro- GOM haplotypes. This structure, separating the 
posed for other cetacean species (Hoelzel et al., SAO and GOM populations, may be sustained or 
2002, 2007; Luca et al., 2009). not if more samples are included in a future analysis.

Analyses of all mitochondrial markers showed In a study of population structure in S. fronta-
large genetic differentiation between the NAO and lis, Adams & Rosel (2006) found similar differ-
SAO populations, and between NAO and GOM. entiation between NAO and GOM populations 
However, the FST value between SAO and GOM and suggested that the most likely hypothesis 
was substantially lower, which is also reflected in is the influence of the distribution of their prey. 
the haplotype network where there are distances of The physical barrier that could prevent dispersal 
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Figure 4. Species tree estimated for Cyt b with the BEAST method. Posterior probability values are above nodes.
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between GOM and NAO would be the ocean S. clymene closely related to S. coeruleoalba (as 
streams, but dolphins are highly agile organisms, reported by LeDuc et al., 1999; May-Collado & 
and water currents are not likely to be a barrier Agnarsson, 2006; Agnarsson & May-Collado, 
for them; however, their prey would have limited 2008; Möller et al., 2008; McGowen et al., 2009; 
dispersal because of water currents (Dowling & Bilgmann et al., 2011; McGowan, 2011). Thus, 
Brown, 1993; Hoelzel, 1994). The same situation we must improve the S. clymene DNA sample col-
would apply to S. clymene considering most of its lection to better understand its genetics and rela-
prey are mesopelagic species (Jefferson & Curry, tionships to other species in the Stenella genus. 
2003) whose distribution is influenced by vertical 
stratification of water bodies (Davis et al., 1998). Conclusions

An interesting fact that should be highlighted Our results indicate that S. clymene individu-
in the analysis of Cyt b haplotype networks is that als from northeastern Brazil have high haplotype 
the individual KF691995 from GOM is closer to diversity and probably constitute one population. 
SAO05 from SAO than to any other individual Additionally, our results suggest that there might 
from GOM (Figure 2). An explanation for such a be three well-defined populations in the Atlantic 
result could be the existence of gene flow between Ocean: (1) North Atlantic Ocean, (2) South Atlantic 
the SAO and GOM stocks. The occurrence of a Ocean, and (3) Gulf of Mexico. In addition, there 
seasonal migration of S. clymene from the SAO are probably individuals that move between the 
to the GOM region is possible if considering the SAO and GOM populations, while the NAO popu-
study of Stramma et al. (1995). They reported that lation seems to be isolated. 
during the austral spring in the northern Brazil 
current, there is an undercurrent of intense speed Acknowledgments
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