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Abstract

Male humpback whales (Megaptera novaean-
gliae) produce long songs that contain predictably 
repeated sound patterns. Other animals (including 
humans) identify patterns in acoustic sequences 
based on regularities in transitions between 
sounds. The present study examined transitional 
probabilities within humpback whale songs to 
determine whether relative acoustic changes from 
unit to unit are sufficient for identifying repeating 
patterns within humpback whale songs. To iden-
tify such patterns, four humpback whale songs 
were analyzed by first classifying song units 
using a self-organizing map, and then calculat-
ing transitional probabilities based on these clas-
sifications. Two separate analyses of transitional 
probabilities were conducted: one involved units 
classified based on their absolute acoustic features 
(e.g., duration, peak frequency, and amplitude) 
as well as changes in these features relative to 
adjacent units, and the other used units classified 
based on the relative changes alone. Both analy-
ses revealed repeated sequences of units within 
humpback whale songs, but the analysis based on 
relative changes alone yielded a larger number of 
predictable transitions. This finding suggests that 
relative acoustic changes within humpback whale 
songs may provide robust indicators of repeating 
patterns. 
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Introduction

Male humpback whales (Megaptera novaean-
gliae) produce long series of sounds, which are 
known as song. These sound sequences have a 
predictable structure that can be described in 
terms of a hierarchy of components ranging from 
individual sounds (units), through phrases and 
themes, to the song itself, which may repeat many 

times in the course of a song session (Payne & 
McVay, 1971). The properties of humpback whale 
song suggest that its function may depend on the 
sequential organization of song units.

One aspect of humpback whale song that has 
impeded understanding of its temporal structure 
is the fact that, while whales in a given location 
typically sing quite similar songs (Winn & Winn, 
1978; Guinee et al., 1983; Payne & Guinee, 1983; 
Payne & Payne, 1985), the individual sounds that 
constitute the songs can vary considerably from 
one year to the next (Payne & Guinee, 1983; 
Helweg et al., 1998; Cerchio et al., 2001; Mercado 
et al., 2005). Therefore, it is unlikely that the 
function and informational content of humpback 
whale songs, if any, depend solely on the invari-
ant acoustic features of the song components. One 
source of information that could be stable despite 
changes in the absolute features of song units is 
the change from one unit to the next. The aim of 
the present study is to investigate the possibility 
that such changes might be useful for identifying 
patterns within a song.

Little is known about what listening whales 
learn from songs, particularly with respect to the 
temporal structure. Listening whales undoubtedly 
detect whales that are singing nearby, and probably 
acquire information about the approximate loca-
tion of the singer. If the patterns within a whale’s 
song convey specific information to other whales, 
the listeners should have some way of detecting 
patterns despite the changing repertoire of song 
units. At a minimum, they need to be able to know 
what parts of the song constitute a pattern and to 
identify patterns that may have different meanings 
or functions. 

One mechanism through which whales might 
learn to recognize these patterns is statistical 
learning. Research suggests that when humans 
interpret speech, they consider not only the fea-
tures of an individual sound but also its con-
text—that is, the sounds or silent intervals that 
precede or follow the utterance. Research using 
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connectionist models of spoken word recognition 
demonstrated that a phoneme’s temporal context 
can guide recognition and syntactic processing 
(Rumelhart & McClelland, 1986). Consistent with 
this finding, infants use the statistical distribution 
of phoneme transitions as cues to word boundar-
ies (Saffran et al., 1996; Aslin et al., 1998). To 
illustrate, consider the phrase “humpback whale 
song.” The word “whale” occurs many times in 
this document. As a result, “wh” is often fol-
lowed by “a,” which is usually followed by “le.” 
Therefore, the “wh” - “a” and the “a” - “le” tran-
sitions occur relatively frequently. In contrast, 
transitions across a word boundary—in this case, 
“ck” – “wh” and “le” – “s”—occur less frequently 
because there are a variety of different words that 
could precede or follow “whale.” In a similar 
fashion, one might expect to find high transitional 
probabilities between humpback whale song units 
that occur within a phrase or theme and low tran-
sitional probabilities between units that cross a 
theme or phrase boundary. Prior research has used 
analyses of transitional probabilities to demon-
strate that themes within humpback whale songs 
are produced in a predictable order (Payne et al., 
1983), but this approach has not previously been 
extended to the analysis of unit sequences.

In the case of whale song, unit classification 
is a prerequisite for analysis of transitional prob-
abilities within phrases since it is not possible to 
determine the likelihood of a transition from Unit 
A to Unit B without first developing a method 
for clearly determining which song units are to 
be classified as Type A or Type B. For this pro-
cess, the choice of dimensions along which one 
classifies the song units is important. If the songs 
are analyzed using measures of acoustic features 
that are incidental to whatever pattern is present, 
then the analysis is unlikely to identify patterns. 
Conversely, if certain measures are integral to pat-
terns contained within the song, analyses based 
on classification schemes that focus on those 
measures should be more likely to identify pat-
terns. There have been many previous attempts to 
categorize whale song units. Early investigations 
of whale sounds often relied on subjective human 
judgments of the acoustic signal (Winn & Winn, 
1978) or on quantitative analyses of acoustic fea-
tures (Clark, 1982; Chabot, 1988; Mednis, 1991; 
Potter et al., 1994). More recently, a type of neural 
network known as a self-organizing map, or SOM 
(Kohonen, 1990), has been used to objectively 
classify whale song units (Walker et al., 1996; 
Mercado & Kuh, 1998; Suzuki et al., 2006). 

A SOM consists of multiple processing units 
(called nodes) that each respond selectively to 
particular input features. Like other neural net-
works, SOMs can be trained to classify inputs—

in this case, measures of humpback whale song 
units—by repeatedly presenting those inputs 
to the SOM. With training, nodes in the SOM 
become retuned such that they selectively respond 
to features that are prevalent within the input set. 
For example, if a SOM is trained with measures of 
whale song units, some nodes may become active 
only when the inputs correspond to low frequency, 
high amplitude, and long duration sounds. Other 
nodes may become active only when the inputs 
are measures from high frequency, short duration 
sounds. Consequently, song units can be described 
in terms of the SOM nodes that they activate. The 
advantages of SOM-based classifications of song 
units are that they are quantitative, automatic, 
and objective. Furthermore, since SOMs classify 
a data set on a clearly defined set of dimensions, 
the success or failure of otherwise identical SOMs 
at producing useful classification schemes when 
different measures are used provides an indication 
of how useful those measures are for describing 
the data.

In the current study, SOMs were used to clas-
sify song units as a first step toward determining 
transitional probabilities within songs (see also 
Suzuki et al., 2006). The goal of these analyses 
was to evaluate whether measures of relative 
changes in units can be useful for identifying 
repeated patterns in whale songs. The hypothesis 
is that relative changes from one unit to the next, 
rather than the absolute features of each individual 
unit, can, in principle, serve as a cue to song struc-
ture. It is important to note that these analyses do 
not address the question of whether this approach 
will be useful for characterizing all humpback 
whale songs. It is clear that songs produced by 
different whales in various contexts, years, and 
geographical regions may differ in many ways. 
Whether characterizations of songs based on rela-
tive changes across units can encompass the full 
range of structural variability seen across indi-
viduals, years, and populations in an informative 
way is an empirical question that is only worth 
pursuing if there is some evidence supporting the 
hypothesis noted above. The aim of this study is to 
test this hypothesis.

Comparative evidence suggests that perception 
of relative change may play a greater role in mam-
malian auditory perception than has generally 
been recognized. For example, dolphins appear to 
be sensitive to both relative and absolute features 
of tone sequences (Ralston & Herman, 1995) and 
variations in amplitude (Richards et al., 1984). 
Similarly, human infants can recognize melodies 
based on relative frequency changes despite over-
all changes in absolute frequency (Plantinga & 
Trainor, 2003). If humpback whales are also sen-
sitive to patterns of relative change within sound 
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sequences, then one would expect that relative 
changes across song units might be as important  
as (or even more important than) the absolute 
acoustic features of individual units. Conversely, 
if patterns of relative change are inconsistent 
across phrases, it is less likely that they contribute 
to the function of humpback whale song.

Materials and Methods

To investigate the usefulness of basic acoustic 
features of units (e.g., intensity, frequency, and 
duration) and relative change in these features 
between units as cues to the temporal structure of 
humpback whale song, two separate analyses of 
whale songs were conducted. In the first analysis, 
a SOM classified song units using acoustic fea-
tures of units as well as the change in these fea-
tures from one unit to the next prior to statistical 
analysis of the song sequences. To gauge the con-
tribution of relative changes in acoustic features, a 
second SOM used only the relative change across 
units as a basis for classification. If the changes in 
acoustic features from one unit to the next were 
incidental to the structure of phrases, then statisti-
cal analyses based on this second SOM should be 
less effective at identifying patterns within songs. 
If, on the other hand, relative changes were a pri-
mary source of cues to phrasal structure, then sta-
tistical analyses based on the second SOM should 
be equally or more effective at identifying patterns 
within songs.

Classification of Song Units
Four humpback whale songs recorded in 1992 by 
researchers at the Kewalo Basin Marine Mammal 
Laboratory were analyzed in the current study; the 
songs were recorded on different days (29 January, 
13 February, 13 March, and 24 March) from 
whales wintering off the coast of Hawaii. Song 1 
was 739 s in total duration. Song 2 was 900 s long, 
and Songs 3 and 4 were 604 s and 1,081 s long, 
respectively. These songs were chosen based on 
recording quality and because earlier subjective 
and quantitative analyses established that these 
songs contained recognizable patterns (Mercado 
et al., 2003). They are structurally comparable to 
humpback whale songs that have been described 
in many prior reports (i.e., they all contain themes 
produced in a predictable order, which are com-
posed of repeated phrases, which consist of stereo-
typical sequences of units). This sample is not suit-
able for statistically assessing whether the chosen 
songs are representative of songs from this region 
or time period, or for comparing features of these 
songs with those of songs from other regions or 
time periods, and no attempts at such comparisons 
are made in the current analyses. 

Recordings were sampled at a rate of 22,050 Hz 
(note, however, that spectral components above 
4,000 Hz were rarely present in these particular 
recordings). An automated sound segmentation 
program, running in MATLAB, isolated song 
units from recordings based on signal amplitude 
compared to the amplitude of the silent intervals 
between units. The threshold for setting the start 
point of a unit was arbitrarily defined as the point 
where the signal amplitude over a 5-ms interval 
was three times the amplitude of the “background 
noise” separating the previous two units, and the 
stop point was defined as the point where the aver-
age amplitude for a 5-ms segment dropped below 
twice the noise value. In cases where the start and 
stop point for a given unit did not coincide with 
the subjective judgment based on listening to the 
sound and viewing its waveform and spectro-
gram, the unit boundaries were changed to match 
the subjective judgment. This was done because 
background noise occasionally led the algorithm 
to assign unit boundaries incorrectly. While the 
choice of unit boundaries will have some impact 
on each analysis, it should be noted that the same 
set of unit boundaries was used for each simula-
tion, so comparisons between the two simulations 
were unlikely to have been systematically affected 
by the choice of boundaries.

Once unit boundaries were set, the program 
computed the duration, amplitude, and peak fre-
quency (as measured from the power spectral den-
sity function) for each unit. The temporal separa-
tion between each unit and the relative change in 
frequency, duration, and amplitude between a unit 
and its neighbors also were calculated. Automated 
segmentation was verified by listening to record-
ings and visually monitoring amplitude plots. 

Once individual units had been isolated, input 
feature vectors were generated for each unit. For 
the first analysis, each vector contained eleven 
elements: absolute peak power spectrum den-
sity, duration, amplitude, the duration of the gap 
between the preceding and following unit, and the 
relative change in peak power spectrum density, 
duration, and amplitude relative to the preceding 
and following units. In the second analysis, the 
measured elements of absolute peak power spec-
trum density, duration, and amplitude were omit-
ted. For all units analyzed, each vector element 
was normalized such that the mean value across all 
vectors was 1. This was done to prevent elements 
with a large range of values (e.g., peak frequency, 
which ranged from 16 to over 3,000 Hz) from 
dominating the network relative to elements that 
covered a narrower range of values. The mean-
squared amplitude of the sound waveform served 
as a measure of sound intensity. Note that this 
measure is not intended to reflect the source level 
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of the sound but, rather, the received sound level at 
the recording location. Variations in distance from 
the singing whale, recording sensitivity and other 
factors will cause received sound level to differ 
from source level. Nevertheless, past analyses 
have shown that received levels vary systemati-
cally across units (Mercado et al., 2003; Au et al., 
2006). Measurements of received level are useful 
for assessing what listening whales would hear. 

Relative changes in frequency, duration, and 
amplitude were represented as log ratios to ensure 
that high values would not have disproportionate 
effects on the mean relative to their reciprocals, 
thereby distorting the SOM. Another advantage 
of the log ratio transformation is that symmetri-
cal relationships are represented with symmetrical 
values. That is to say, if the frequency of one unit 
is 10 times higher in frequency than the previ-
ous unit, then the measure of the frequency of the 
second unit relative to the first would be 1 and the 
measure of the relative frequency of the first unit 
relative to the second unit would be -1. 

Network Implementation
SOMs were implemented via the newsom func-
tion in MATLAB’s Neural Network Toolbox. 
Each SOM consisted of 36 nodes, arranged in a 
6 × 6, two-dimensional hexagonal grid. SOMs 
were trained for 200 epochs (the term “epoch” 
refers to the successive presentation of each of 
the input vectors to the SOM in a random order). 
Note that all samples were used in training. Unlike 
supervised neural networks, which are typically 
presented with a subset of the data in order to 
train them to produce specific outputs, the SOM 
learns in an unsupervised fashion, without user 
feedback. Consequently, it is not necessary to pre-
train SOMs with a subset of the data.

At the beginning of training, nodes within the 
SOM were initially given random values for each 
of the input dimensions. During training, a stan-
dard algorithm calculated which node was most 
similar to the input (using MATLAB’s linkdist
function). The most similar node and surrounding 
nodes were then automatically modified so that 
they all became more similar to the input. Two 
parameters, called the learning rate and the neigh-
borhood size, controlled how the selectivity of 
nodes was adjusted. The learning rate (set at 0.2) 
determined the degree to which nodes were modi-
fied after responding to an input, and the neighbor-
hood size (set at 1) determined how many nodes 
were modified. This process was repeated for each 
of the inputs within each epoch.

How a trained SOM classifies song units is 
determined by what the neural network learns 
during training. Consequently, individual nodes 
within a trained SOM do not always correspond 

to subjective categories. One way to assess how 
a SOM is classifying song units is to determine 
which input vector generates the strongest 
response at each node. The unit that most strongly 
activates a particular node is generally proto-
typical of the kinds of units that will activate that 
node. For example, Figure 1 shows a 6 × 6 grid of 
spectrograms, each of which corresponds to the 
unit that best activates the node in the correspond-
ing location of a trained SOM. For this particular 
SOM, short duration units were likely to activate a 
node on the right side of the map, and long dura-
tion units were likely to activate a node on the left 
side of the map. In the current analyses, every 
song unit was classified based on the node within 
a trained SOM that it activated most strongly. 
Specifically, each unit was assigned a number 
based on which of the 36 nodes within the SOM 
became active when the unit’s feature vector was 
used as an input. In this way, sequences of units 
were automatically transformed into sequences of 
numbers. 

Analysis of Transitional Probabilities
After sequences of song units were transformed 
into sequences of numbers using SOMs, transi-
tional probabilities within these sequences were 
analyzed to determine whether they contained 
repeating patterns like those found via subjective 
analyses of song structure. Based on prior stud-
ies, one would expect hierarchical structure to 
be evident in the temporal distribution of units in 
the song. Viewed in the context of a 6 × 6 map 
of nodes, instances of a given phrase or repeated 
sequence should follow similar trajectories within 
the SOM multidimensional space. Moreover, 
within a given phrase, the probability that one 
class of song unit follows another should not be 
random, but, instead, should be determined by 
the internal structure of the phrase. The transi-
tional probability from one unit to the next should 
thus be much higher than would be predicted by 
chance. In contrast, unstructured regions of hump-
back song, or boundaries between phrases, should 
contain more low-probability transitions. To 
examine whether this was the case, the frequency 
of occurrence for each of the possible two-unit 
pairings, or bigrams, was calculated, followed by 
the frequency of occurrence for each bigram as a 
percentage of all bigrams beginning with the same 
unit. This provided a measure of the transitional 
probability for each unit transition in each of the 
songs, where transitional probability is defined as 
the proportion of occurrences in which one unit 
type is followed by another (Aslin et al., 1998).
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Results

Feature vectors were generated for 1,183 song 
units collected from the four songs. The distribu-
tions of peak frequency, duration, and amplitude 
for these units are shown in Figure 2 for each song. 
The distribution of peak frequency was bimodal, 
with a local minimum at approximately 250 Hz 
and a wide plateau from approximately 1,200 
to 2,000 Hz. The distribution of duration was 
positively skewed and unimodal, with a peak at 
approximately 0.5 s. These distributions are simi-
lar to those found by Mercado et al. (2005), who 
also showed a large number of units with peak 
frequencies around 250 Hz and a plateau extend-
ing to approximately 2,250 Hz, although these 
regions were not separated by a local minimum as 
they were in the current analysis. Duration in the 
earlier study also was positively skewed, though 
the modal duration was greater than 1 s. The fact 
that the current sample contains more units of 
shorter duration could indicate that the threshold 
used here for determining start and stop times was 
higher or that the sample used by Mercado et al. 
happened to contain more units of longer duration. 
Amplitude showed a fairly symmetrical but ragged 
distribution; variations in whale distance and in 
the quality of the recordings undoubtedly affected 

these distributions. When the relative change from 
one unit to adjacent units is plotted for frequency, 
duration, and amplitude for each song, the distri-
butions are symmetrical and differ mainly in the 
number of values near zero (see Figure 3).

The spatial distribution of nodes within the 
SOM trained with both directly measured features 
and relative changes in units revealed that indi-
vidual nodes were selective for variations in peak 
frequency, duration, and amplitude. Specifically, 
the upper left corner of this map contained nodes 
that responded best to units with peak frequen-
cies below 500 Hz, while nodes grouped along the 
lower and rightmost edge of the map responded 
best to units with higher peak frequencies. Nodes 
that responded best to long duration units were 
found in the upper right corner of the map. Nodes 
that responded best to high amplitude units were 
found in the lower right quadrant. The spatial struc-
ture of the trained SOM suggests that the distribu-
tions of unit frequency, duration, and amplitude 
were not systematically related. If they had been, 
then nodes selective for units with correlated fea-
tures should have been present (e.g., if most long 
duration units contained low peak frequencies, 
then units selective for these features should have 
been found in the same regions of the SOM).

2 KHz

1 s

Figure 1. Spectrograms of the humpback whale song units that most strongly activate each of the 36 nodes in a SOM trained 
to classify units based on relative changes; note the scale located by the leftmost node on the bottom row.

206 Green et al.



Analysis of Temporal Structure Based on Direct 
Measures and Relative Changes
When song units were classified using the SOM 
described above, the distribution of unit transitions 
was not randomly distributed within songs (c2

(1,295)

= 3,535, p < 0.01). Most unit transitions tended 
to involve particular subsets of SOM nodes. This 
indicates that the temporal arrangement of units 
within each song plays a role in song organiza-
tion and that this temporal structure is discernable 
through analyses of SOM-classified units. 

Song 1 (recorded on 29 January 1992) con-
tained prolonged stretches of high-probability 
transitions consisting almost entirely of repeti-
tions of three-unit sequences. Analyses of other 
songs did not reveal repeating patterns; this result 
does not imply that longer patterns were not pres-
ent, only that they were not evident in this par-
ticular analysis. High-probability transitions in 
these songs typically occurred in isolation or in 
pairs, suggesting that two- or three-unit sequences 
may be a fundamental component of their phrase 
structure.

Although the analysis of transitional probabili-
ties did not show many individual patterns longer 
than three or four units, the repeating trigrams 
found in Song 1 were startlingly clear and merit 
further discussion. In Song 1, there were 26 repeats 
(along with several near misses) of a single three-
unit sequence, associated with Nodes 6, 3, and 15 
respectively, comprising approximately one-third 
of the song. Considering all units in terms of their 
nearest nodes, those associated with Nodes 6, 3, 
and 15 were dominated by Song 1 units, in spite 
of the fact that Song 1 was the shortest by far of 
the four songs analyzed. This demonstrated that 
the SOM was sensitive to at least some patterns 
within humpback whale song, although it appears 
that for Songs 2 (recorded on 13 February 1992), 3 
(recorded on 13 March 1992), and 4 (recorded on 
24 March 1992), which were somewhat less clear 
than Song 1, the net was not sensitive to overall 
theme and phrase structure. This may be due to 
the comparative difficulty of determining a unit’s 
start or stop point, or even that a unit exists, amid 
at times considerable background noise. Further 
study using a larger sample of whale song may 
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Figure 2. Distribution of measures of peak frequency (upper), duration (middle), and amplitude (lower) of humpback whale 
song units recorded in 1992; amplitude is the mean square of the amplitude values for the .WAV file for each unit. The solid 
black line indicates measures from Song 1 (29/1/92), the solid gray line corresponds to Song 2 (13/2/92), the dashed black 
line indicates measures from Song 3 (13/3/92), and the dashed gray line corresponds to units from Song 4 (24/3/92).
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give a clearer understanding of which whale songs 
are more amenable to SOM analysis. 

The repeating three-unit sequence in Song 1 
described above is informative because it provides 
a way of ascertaining which acoustic dimensions 
of units are important for establishing the temporal 
pattern. The SOM differentiated between individual 
units based on differences in the 11 features repre-
sented by the input vector. Initially, it was unclear 
whether directly measured features or relative 
changes in features were more important as cues for 
discriminating between units. To address this ques-
tion, and to investigate whether each of the three 
sound features—peak frequency, duration, and 
amplitude—are important in this repeating pattern, 
features of the units in the repeating sequences were 
analyzed. Features that are important for identifying 
this repeating pattern should be consistent across 
repetitions of a unit, but different from instances of 
the other units to accentuate the cyclical pattern.

As shown in Figure 4, the peak frequency, dura-
tion, and amplitude of the three units overlapped 
considerably, suggesting that there were few dis-
crete, stereotypical acoustic features that defined 
the components of the pattern. In contrast, for 
measures of relative change in these features, as 
well as for the silent intervals between units, the 
range of at least one of the three units did not over-
lap with its neighbors. This result indicates that in 
this case, relative changes in the peak frequency, 
duration, and amplitude were more important for 
classifying whale song units in repeating patterns 
compared to directly measured features. 

Analysis of Temporal Structure Based on Relative 
Changes Alone
To further assess the role of relative changes across 
song units in the temporal structure of whale 
songs, a second analysis was conducted in which 
a SOM was trained to classify units based on input 
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Figure 3. Distribution of measures of relative log frequency (upper), duration (middle), and amplitude (lower); positive 
values indicate that a unit has a higher value than the previous unit. The solid black line indicates measures from Song 
1 (29/1/92), the solid gray line corresponds to Song 2 (13/2/92), the dashed black line indicates measures from Song 3 
(13/3/92), and the dashed gray line corresponds to units from Song 4 (24/3/92). The region from -0.5 to +0.5 has been shaded 
to illustrate the symmetry of the distributions. 
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vectors that did not contain direct measures of the 
acoustic features of those units. The same set of 
isolated whale song units used in the first analy-
sis was also used in this analysis; however, each 
input vector used to train the SOM in this analysis 
contained only eight of the original 11 elements 
(duration of preceding gap, duration of following 
gap, preceding/following log relative frequency, 
preceding/following log relative duration, and 
preceding/following log relative amplitude)—that 
is, the three elements containing direct measures 
of the duration, peak frequency, and amplitude of 
each unit were no longer included as part of the 
input vector.

Nodes in this second trained SOM were less 
obviously organized than in the previous analysis. 
Figure 1 shows spectrograms of a representative 
unit for each map node. Units that lasted longer 
than one of their neighbors tended to occupy the 
upper left quadrant of the SOM, and relatively 
shorter units occupied the lower right quadrant. 
The relative change in amplitude values of the 
nodes showed the most coherent distribution, with 
local maxima in the lower-left quadrant and local 
minima in the upper-right, separated by a band 
of no change or rising/falling trends. It is pos-
sible that this pattern of unit distribution did not 

emerge in the previous analysis because differ-
ences in amplitude related to distance or recording 
differences overwhelmed patterns across units. 
The other corners of the map were also amplitude 
maxima and minima, revealing further evidence 
of an influence of relative amplitude. This analy-
sis suggests that classification of song units based 
solely on relative features reveals patterns that are 
similar to, but distinct from, those obtained when 
both direct measures and relative changes are 
considered. 

Transitional probabilities in sequences gener-
ated by this second SOM were not randomly dis-
tributed overall (c2

(1,295) = 6,025, p < .01). Relative 
to the first analysis, more of the unit types (as 
classified by the SOM) were followed by a dis-
tribution of units that would not be likely to occur 
by chance (pby chance (pby chance (  < .05; 94% vs 75% of unit types). 
As with the first analysis, sequences generated 
by the second SOM revealed a series of repeating 
triplets in Song 1 (20 repetitions of the sequence 
1-32-35) as well as several similar triplets. Across 
all songs in this analysis, there were 270 (23%) 
high-probability transitions (a transition A-B was 
considered high-probability if 25% or more of the 
bigrams that start with Unit A were of the Type 
A-B). In comparison, 136 (12%) high-probability 

Figure 4. A comparison of the range (error bars indicate ± 2.5 SD) of directly measured and relative changes for 23 repeti-
tions of the 6-3-15 unit sequence; there is considerable overlap in the range of the directly measured features, but the ranges 
of relative features do not overlap for some elements of the sequence.
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transitions were found in the first analysis. The 
number of high-probability transitions for each 
song is shown in Figure 5. A list of the most 
frequent of these sequences appears in Table 1. 
Together, high-transitional probability sequences 
with transitional probabilities greater than 25% 
comprised 453 units, or 38% of the total content 
of the four recordings.

With the exception of the repeating sequence in 
Song 1 mentioned above, all of the most common 
high-probability bigrams listed in Table 1 occurred 
in more than one song. This argues against the 

idea that these patterns are artifacts or that these 
sequences are an idiosyncrasy of Song 1. The 
nature of these high-probability transitions can 
be understood by considering the nodes that are 
associated with them (in the following descrip-
tion, numbers refer to units that activate particular 
nodes, as shown in Figure 1). For example, in the 
33-18 sequence, which occurs 17 times, the “33” 
unit is higher in amplitude and lower in frequency 
than its immediate neighbors, whereas the “18” 
unit is lower in amplitude and higher in frequency 
than its neighbors. Another common sequence, 

Table 1. Tally of common repeating sequences in songs revealed when units were characterized in terms of relative changes

Sequence Total Song 1 Song 2 Song 3 Song 4

1-32-35 20 20 0 0 0
33-18 17 8 3 4 2
30-13 17 2 7 2 6
14-36 16 3 5 4 4
17-31 16 1 0 4 11
25-6 13 1 7 0 5
19-18 10 1 5 2 2
23-15 9 0 5 3 1
23-5 9 0 4 1 4
36-16 9 1 3 0 5
5-24 8 0 1 0 7
9-30 8 0 3 0 5
10-19 8 1 5 2 0
12-26 8 1 4 1 2
1-32 8 5 2 0 1
15-24 7 0 3 1 3

Figure 5. Number of high-probability (> 25%) transitions found using two different SOMs for classifying units within hump-
back whale song; fewer high-probability transitions were found when units were classified using directly measured acoustic 
features, gap duration, and relative change in features (gray bars) than when units were classified using gap duration and 
relative feature change alone (black bars).
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the 14-36 sequence was not marked by clear dif-
ferences between the units except in duration 
relative to the following node. The “36” unit was 
shorter than the node that preceded it, while the 
“14” unit in fact had the longest duration relative 
to its following unit of all the network nodes. The 
14-36 bigram thus indicates a decrease in duration 
in the absence of a marked change in frequency 
or amplitude. 

As can be seen from these examples, the magni-
tude of feature change across the whale song units 
varies from one high-probability sequence to the 
next. Some permutations of change in duration, 
frequency, and amplitude are over-represented rel-
ative to others. The SOM trained with relative fea-
tures of song units was more effective at isolating 
these patterns compared to the first SOM that took 
into account both direct and relative measures of 
whale song features. 

Discussion

Despite the fact that individual humpback whale 
songs tend to contain repeated patterns, the basic 
units and patterns that make up these sequences 
typically vary from year to year (Payne & Guinee, 
1983; Payne et al., 1983; Helweg et al., 1998; 
Cerchio et al., 2001). The current analyses inves-
tigated whether classifying songs based on the 
relative change between units could effectively 
detect patterns within whale song. This would in 
principle allow the properties of units to be flex-
ibly changed, either to accommodate environmen-
tal constraints (Norris, 1995; Mercado & Frazer, 
1999) or to allow for seasonal variation for other 
reasons. The current analyses demonstrate that 
classifying units in terms of their differences from 
preceding and following units reveals patterns in 
the temporal sequence of song units that are not 
evident when units are classified based on their 
directly measured acoustic features. Specifically, 
the second analysis, in which only the relative 
changes from one unit to the next were used as 
a basis for classifying whale song units, outper-
formed the first analysis. 

Examination of transitional probabilities 
across song units revealed certain predictably 
repeating elements in both analyses, most nota-
bly a repeating three-unit phrase in Song 1. This 
phrase involved a complex series of changes to 
amplitude, peak frequency, and duration across 
units. Consistent with the idea that repeated pat-
terns can be best characterized by the relative 
change between units within each pattern, tran-
sitions from one unit to another within a phrase 
were often more consistent than the absolute 
features of the units themselves. Additionally, 
the second analysis revealed a greater number of 

repeating units, possibly phrases or subphrases. It 
should be noted that these analyses do not sup-
port conclusions about whale song in general 
since other songs by other singers in other years 
may show substantially different patterns. These 
analyses instead demonstrate that classification by 
relative acoustic features can successfully iden-
tify patterns. Therefore, methods of classification 
based on relative measures may be more effective 
in detecting temporal patterns that would be rel-
evant to listening whales as an alternative to or in 
conjunction with methods that depend on features 
of the units in isolation. 

In addition to serving as potentially effective 
cues in quantitative analyses of whale song struc-
ture, patterns within songs that are defined by 
relative changes may have more utility for whales 
because environmental conditions and propaga-
tion-related distortion can obscure the acoustic 
features of song units. For example, the perceived 
loudness of a unit will vary depending on the lis-
tener’s distance from a singer. Because many song 
units show a gradual increase in amplitude at the 
beginning of the unit and a gradual decrease at 
the end (Au et al., 2006), song units from distant 
whales may seem shorter in duration if only the 
middle of the unit reached the threshold for detec-
tion. Pitch should also be affected, both because 
different frequencies do not propagate equally 
well across long distances (Dusenbery, 1992; 
Mercado & Frazer, 1999) and because there may 
be individual differences in pitch among singing 
whales. 

If the patterns defined by relative change across 
units prove to be stable across years, further study 
of these patterns could provide the basis for a 
new understanding of phrasal structure in whale 
song. Under previous systems for describing 
songs (e.g., Payne & McVay, 1971), changes in 
acoustic features from one year to the next may 
have obscured similarities in phrases across years 
associated with relative changes across units. 
If so, this raises questions as to the relationship 
between absolute acoustic features and patterns of 
change across units. For instance, to what extent 
do repeated phrases defined by relative changes 
vary with respect to the absolute acoustic features 
of their constituent units? For such phrases, do the 
acoustic features change in some predictable way 
depending on year, location, or other factors such 
as a whale’s acoustical or social environment? 

The answers to the above questions may pro-
vide some indication of the function of repeated 
phrase structure within songs, which has been the 
subject of considerable debate. Some research-
ers argue that the songs are mating displays (for 
review, see Helweg et al., 1992; Au et al., 2000), 
while others argued that humpback whale song is 
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used for echolocation (Mercado & Frazer, 2001) 
and echo-ranging (Clark & Ellison, 2004). Guinee 
and Payne (1988) argued that patterns in whale 
song made the songs easier to remember. Given 
the various functions that acoustic signals serve 
throughout the animal kingdom, it is likely that 
other functions are possible. If researchers can 
identify fundamental organizing principles in 
whale song that generalize over time and across 
geographic location, this knowledge may clarify 
why whales modify the acoustic features of their 
repertoire over time. To illustrate, the mating 
display hypothesis makes no claims about song 
structure other than that “better” singers should 
have a better chance of mating or discouraging 
competitors. In contrast, if humpback whales use 
their songs for echolocation, then the acoustic 
characteristics of units should be tailored to envi-
ronmental conditions rather than to the proclivi-
ties of listening females. Alternatively, if songs 
convey information, whales should employ cer-
tain themes or phrases in certain contexts, loca-
tions, or situations. 
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