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Steller Sea Lion (Eumetopias jubatus) Prey Fills Seasonal and
Geographic Gaps in Existing Information
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Abstract

Energy density data of prey items are necessary to
estimate food requirements of predators. The goal
of this study was to provide proximate composi-
tion and energy density information for Steller
sea lion (Eumetopias jubatus) prey species where
there are seasonal and/or geographic gaps in the
existing data. Opportunistic collections were
made on board National Oceanic and Atmospheric
Administration fisheries research surveys in the
Aleutian Islands region, eastern Bering Sea, and
Gulf of Alaska, targeting particular species of
interest. Proximate analyses were conducted in the
laboratory and energy density was calculated from
lipid and protein content. Pacific herring, sand
lance, and rockfish were found to contain the high-
est amount of lipid and provide the most energy.
Atka mackerel, surf smelt, capelin, salmon, sand-
fish, pollock, yellow Irish lords, Pacific cod, squid,
skates, and rock sole had intermediate energy
densities. Smooth lumpsucker and snailfish were
found to contain the least amount of energy. This
study is the first to provide proximate composi-
tion data for adult pollock during the nonspawn-
ing seasons in the Gulf of Alaska and Aleutian
Islands region. This study also provides the first
proximate composition data for juvenile pollock
in the Aleutian Islands region and eastern Bering
Sea, and for Pacific cod in the eastern Bering Sea.
This study fills another critical gap by presenting
the only information on proximate composition of
adult Atka mackerel, one of the most important
prey of Steller sea lions in the Aleutian Islands
region. These improvements in the seasonal and
geographic coverage of fish proximate and energy
density data will allow for seasonally and geo-
graphically specific estimates of Steller sea lion
prey requirements, a necessary improvement over
annual estimates made previously. These data can
also contribute to bioenergetic modeling of prey
requirements of other predators in Alaska such as
groundfish, fur seals, and marine birds.
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Introduction

Steller sea lion (Eumetopias jubatus) populations
in Alaska declined by more than 80% over the past
30 years (Loughlin, 1998; Loughlin et al., 1992;
National Research Council, 2003; Trites & Larkin,
1996). The western stock (west of longitude 144°
W) was listed as endangered in 1997 under the
U.S. Endangered Species Act. The eastern stock,
although increasing in size, remains listed as
threatened. One of the leading hypotheses pro-
posed to explain the decline of the western stock of
Steller sea lions is nutritional stress due to natural
and/or anthropogenic-related declines in the quan-
tity or quality of prey (National Research Council,
2003). To evaluate this hypothesis, it is necessary
to estimate the prey requirements of Steller sea
lions. A useful method for accomplishing this goal
is bioenergetic modeling, whereby the energetic
requirements of sea lions are calculated from esti-
mates of energy used in respiration and produc-
tion (e.g., growth, fat storage, gonad development,
etc.) and energy egested as waste. Data on sea lion
diet composition and energy content of prey are
then used to convert estimates of energy required
to estimates of prey biomass required (Winship
et al., 2002). Thus, energy density of sea lion prey
(kJ g of fish) is critical for estimating the amount
of fish required by Steller sea lions. Energy den-
sity can be measured directly through bomb calo-
rimetry or calculated from proximate composition
(percent lipid, protein, carbohydrate, ash, and
moisture; e.g., Anthony et al., 2000; Payne et al.,
1999; Van Pelt et al., 1997).

A number of published studies have provided
information on proximate composition and/or
energy density of Steller sea lion prey prior to
this study (Anthony et al., 2000; Boldt, 2001;
Buckley & Livingston, 1994; Davis, 2003; Davis
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Figure 1. Locations of sampling stations; numbers refer to collection sites and are also referenced in the Appendices:

Aleutian Islands region, (B) Eastern Bering Sea, and (C) Gulf of Alaska.
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et al., 1998; Harris et al., 1986; Hendry & Berg,
1999; Kizevetter, 1971; Paul & Paul, 1999; Paul
& Willette, 1997; Payne et al., 1999; Perez,
1994; Robards et al., 1999; Sidwell, 1981; Smith
et al.,1988, 1990; Van Pelt et al., 1997); however,
there are many gaps in the seasonal and geographic
coverage of existing data. In addition, there are vir-
tually no published data for some important prey
species, such as Atka mackerel (Pleurogrammus
monopterygius), which is the dominant prey of
Steller sea lions in the Aleutian Islands region
(Sinclair & Zeppelin, 2002). The goal of this
study was to fill some of these gaps in knowledge
of the proximate composition and energy density
of Steller sea lion prey species. We accomplished
this goal by making collections on board National
Oceanic and  Atmospheric ~ Administration
(NOAA) fisheries research surveys. The collec-
tions, although opportunistic, were targeted at spe-
cies, regions, and/or seasons for which published
information on proximate composition or energy
density did not yet exist. Proximate composition
was determined in the laboratory, and energy den-
sity was calculated from lipid, protein, moisture,
and ash content. Summary data are presented in
tables and figures and detailed data are presented
in Appendices with the goal of providing bioener-
getic modelers the information necessary to esti-
mate the prey requirements of Steller sea lions and
other predators.

Materials and Methods

The fish species included in this study were col-
lected opportunistically from the Aleutian Islands
region, eastern Bering Sea, and Gulf of Alaska
(Figure 1). Individuals collected were within
the size range of fish consumed by Steller sea
lions (Calkins, 1998; Merrick & Calkins, 1996;
Pitcher, 1981). Samples were obtained from vari-
ous National Marine Fisheries Service — Alaska
Fisheries Science Center (AFSC) surveys onboard
NOAA research vessels and chartered commer-
cial fishing vessels. Whole fish were immedi-
ately frozen at approximately -20° C on board
the vessels after collection and remained frozen
until processed in the laboratory for proximate
analysis. Some collections consisted of a single
fish, whereas others were comprised of as many
as 20 fish (Appendices A-C). Fish were measured
and weighed, and sex and spawning state were
determined for some, but not all, collections due
to logistical constraints at sea. Age class also was
estimated from length for some collections.
Proximate analyses were carried out by the Auke
Bay Laboratory of the Alaska Fisheries Science
Center or through a contract with Food Products
Laboratory, Inc. (12003 Ainsworth Circle, Suite

105, Portland, OR 97220). Entire frozen fish were
homogenized in a blender or a meat grinder with
a 4.5-mm die. Three- to five-gram samples of the
homogenate were selected randomly for analysis.
Moisture and ash contents were determined gravi-
metrically while heating. Samples were incubated
at 125°-135° C for two to four hours for total mois-
ture determination, then baked at 525°-600° C
for four to seven hours to determine ash content
(Association of Official Analytical Chemists,
2002). The methods for determining lipid and
protein content differed between the two laborato-
ries. At Auke Bay Laboratory (ABL), the lipid frac-
tion was extracted using the Folch method (Folch
et al., 1957), whereas at Food Products Laboratory
(FPL), lipids were extracted by acid hydrolysis
and ether extraction (Anonymous, 2002). Protein
content was determined with the Dumas method
at ABL, and with the Kjeldahl method at FPL
(Anonymous, 2002). Duplicate samples were
analyzed for protein content at both laboratories.
Studies comparing the results of these two protein
analysis methods find that they compare well for
most materials (Sweeney & Rexroad, 1987; Wiles
et al., 1998). Both methods yield percent nitrogen,
which is then converted to percent protein using
6.25 as the conversion factor (Anonymous, 2002).

Quality control procedures for lipid and pro-
tein analyses were carried out at both laboratories.
Duplicate samples were analyzed for each group
of 10-20 fish, and standard reference samples
were analyzed for each group. Samples were rean-
alyzed if the deviation between duplicates was
greater than 10%-15% of the mean (FPL), or if
the deviation was > 1.5 SD from the mean (ABL).
For all analyses, if the reference sample value was
not within 2.5%-5.0% of the established value, the
sample group was reanalyzed. In addition, a test of
the distillation efficiency during the FPL protein
analysis was run with ammonium sulfate. If the
recovery of ammonium sulfate was less than 95%,
the samples were retested. Similarly, the nitrogen
content of EDTA was tested with each group at
ABL, and if the value was less than 98% of the
expected result, samples were retested.

Energy density (kJ g' wet weight) was calcu-
lated from proximate composition by multiplying
the wet weight proportion of lipid and protein by
36.43 kJ g' and 20.10 kJ g, respectively. These
energetic conversion factors have been validated
by bomb calorimetry (Vollenweider, 2004). We
assumed the carbohydrate composition of fish was
negligible (Brett & Groves, 1979).

Although previous studies showed that the dif-
ferent methods of protein analysis conducted by
the two laboratories involved in this study can
be expected to produce similar results (Sweeney
& Rexroad, 1987; Wiles et al., 1998), we were
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Figure 2. Proximate composition by species; means + 95% CI; number of collection sites is shown in parentheses; A. percent
lipid and B. percent protein.
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Figure 2 (cont.). Proximate composition by species; means + 95% CI; number of collection sites is shown in parentheses;
C. percent moisture and D. percent ash.
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Figure 3. Mean energy density (kJ g wet weight) + 95% CI by fish species at n stations

nonetheless concerned with the potential for our
data to be biased by laboratory and/or analysis
methods. To check for such a bias, subsamples
from a selection of fish were sent to each labora-
tory for parallel protein analyses.

Statistical analyses were performed to check
for potential laboratory- or method-based bias in
lipid, moisture, and ash content, instead of parallel
laboratory analyses. Two-way analysis of variance
(ANOVA) on the entire data set was conducted to
test for the effect of laboratory differences while
statistically controlling for the effect of species dif-
ferences on proximate composition. Because the

data were unbalanced (different sample sizes for
each laboratory), sums-of-squares were obtained
from Yates’ weighted squares-of-means technique
(Type III sums-of-squares) (Anonymous, 2001).
Diagnostic plots (histogram and normal qg-plot of
residuals; and residuals versus fit) were examined
for departures from assumptions of ANOVA.

To further explore the effect of the laboratory on
energy density and also to explore the laboratory-
species interactions, ANOVA were conducted by
species. Species included in these analyses were
only those that were analyzed at both laboratories.

Table 1. Seasonal patterns in means + SD of energy density of fish prey are reported when available. Energy density units
chosen to conform with published data in Hendry & Berg (1999) and Perez (1994).

Energy density

Month Mean SD n Units Source
Pollock November-March 4.94 0.55 13 kJ g wet weight  This study

May-August 3.99 0.82 35 This study
Salmon spp. March 19.87 1.84 4 kJ g' dry weight  This study

July 23.10 - 20 Hendry & Berg,

1999
Northern rockfish ~ February 25.10 0.28 10 kJ g' ash-free dry = Perez, 1994
weight

March 25.13 1.65 8 This study

July 26.72 0.19 11 Perez, 1994

November 22.10 2.19 6 This study
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Table 2. Sex-related differences in Atka mackerel mean + SD of energy density (kJ g' wet weight) at n stations

Energy density

Sex Mean SD n Units Source
Atka mackerel Male 6.01 1.11 16 kJ g' wet weight  This study
Female 5.30 1.00 17 This study

Table 3. Geographic patterns in means + SD of energy density of pollock and Pacific cod are reported when available. Energy
density units chosen to conform with published data in Buckley & Livingston (1994) and Smith et al. (1990).

Energy density

Region Mean SD n Units Source
Pollock Aleutian Islands 4.99 1.07 44 kJ g' wet weight  This study
Eastern Bering Sea 6.55 Buckley &
Livingston, 1994
Gulf of Alaska 391 0.75 50 This study
Pacific cod Eastern Bering Sea 18.73 1.40 32 kJ g' dry weight  This study
Gulf of Alaska 18.51 20 Smith et al., 1990

Results

Mean proximate composition of fish collected in
the Aleutian Islands region, eastern Bering Sea, and
Gulf of Alaska ranged from 0.5% to 13.0% lipid,
4.9% to 19.9% protein, 68.1% to 90.5% moisture,
and 1.8% to 3.9% ash (see Appendices A-C for
proximate composition, biological characteris-
tics, and scientific names of fish collected at each
site). Pacific herring had the greatest lipid content
and the lowest moisture content (Figure 2). Other
high-ranking species in terms of lipid content were
rockfish, sand lance, and Atka mackerel. Species

% Protein FPL

3

10 12 4 16 18 20
% Protein ABL

Figure 4. Comparison of parallel protein analyses, con-
ducted on subsamples sent to Food Products Laboratory
(FPL) and Auke Bay Laboratory (ABL); hypothetical line
with slope=1 is shown.

with low lipid content were rock sole, Pacific cod,
and snailfish. Similar to Pacific herring, these other
species showed an inverse relationship between
lipid and moisture content. Species with inter-
mediate lipid content included surf smelt, yellow
Irish lord, capelin, salmon, pollock, squid, smooth
Iumpsucker, sandfish, and skates (Figure 2A).

Table 4. Summary of two-way ANOVA, testing the main effects of laboratory and species on percent protein, percent lipid,
percent moisture, and percent ash; main effects of laboratory and species are shown on the first two lines. “Lab*Species”

indicates the interaction between the two main effects.

Protein Lipid Moisture Ash
DF  SS MS F p DF SS MS F p DF SS MS F p DF SS MS F p
Lab 11228 122.8 159 000 1 1.8 1.8 04 055 1 167 167 27 010 1 06 06 1.0 032
Species 11 10343 940 122 0.00 11 2436.0 221.5 42.7 0.00 11 2551.9 232.0 38.0 0.00 11 109.8 10.0 156 0.00
Lab*
Species 11 9447 859 11.1 0.00 11 4855 441 85 0.00 11 6369 579 95 0.00 11 169 15 24 0.01
Residuals 580 4470.5 7.7 580 3006.2 5.2 580 3537.7 6.1 580 371.1 0.6
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Table 5. Summary of two-way ANOVA testing of the main
effects of laboratory and fish species on energy density (kJ
g wet weight)

kJ g wet weight

DF SS MS F p
Lab 1 3.0 3.0 2.7 0.10
Species 11 5133 487 415 0.00
Lab*Species 11 94.2 8.6 7.6  0.00
Residuals 580 652.0 1.1

Pacific herring, the species with the highest lipid
content, had the greatest energy density (Figure
3). The other high-lipid, high-energy species were
sand lance and rockfish. The species with the
lowest energy densities were smooth lumpsucker
and snailfish (Cyclopteridea). Atka mackerel, surf
smelt, capelin, salmon, sandfish, pollock, yellow
Irish lords, Pacific cod, squid, skates, and rock
sole showed intermediate energy densities.

Although our collections were made with the
goal of filling seasonal and geographic gaps in
existing information, the data also were sufficient
to examine intraspecific variation in proximate
composition or energy density. For instance, adult
pollock collected between November and March,
before the spawning season, showed a greater
energy density than pollock collected between May
and August, after the spawning season (Table 1;
t-test assuming unequal variances: t = 3.54, DF =
14, p < 0.01). Atka mackerel showed sex-related
variation during the summer spawning season;
males had a greater energy density than females
(Table 2; r-test assuming unequal variances: t =
2.50, DF =17, p < 0.05).

Combining our data with previously published
information allows for additional seasonal and
geographic comparisons. This synthesis of data
showed that Pacific salmon and northern rock-

fish had the greatest energy densities during July
(Table 1). An example of geographic variability
was the relatively high-energy density of pollock
in the eastern Bering Sea (non-spawning season),
followed by the Aleutian Islands region and Gulf
of Alaska (Table 3). In contrast, Pacific cod energy
density during the spawning season varied little
between regions (Table 3).

Comparison of the parallel protein analysis
results at each laboratory showed that the results
for some subsamples were nearly 1:1, indicating
that the two methods performed similarly (Figure
4); however, the results from a number of other
subsamples show that Food Products Laboratory
(FPL) produced lower measurements of protein
than Auke Bay Laboratory (ABL) did.

The two-way ANOVA showed that there was no
significant effect of the laboratory on lipid, mois-
ture, or ash content (Table 4). As expected, there
was a significant effect of species. There also were
significant interactions between laboratory and spe-
cies, indicating that, for some species, the labora-
tory did have an effect on proximate composition.
Two-way ANOVA showed that the laboratory did
not have a significant effect on energy density
(Table 5). ANOVA conducted on a species-by-spe-
cies basis further illustrates the laboratory-species
interactions (Table 6). Some, but not all, species
showed significant laboratory-based differences in
energy density. In addition, the “sign” of the effect
was not consistent among species. For some spe-
cies, FPL results were greater, and for some, ABL
results were greater. The percent difference between
the two laboratory results varied from 1% to 51%.

Discussion

Our study fills several gaps in the seasonal and
geographic scope of existing information on the
proximate composition and energy density of

Table 6. Summary of one-way ANOVAs testing the effect of lab on energy density; n = number of fish analyzed at each
laboratory. Mean kJ g"' wet weight estimated from data collected at each laboratory is shown under FPL and ABL.

Mean
n kJ g wet weight

Species FPL ABL FPL ABL % diff. DF SS MS F p

Atka mackerel 17 59 5.5 6.6 -9% 1 36.9 36.9 19.2 0.00
Northern rock sole 21 4 2.0 4.2 -35% 1 15.7 15.7 17.7 0.00
Northern rockfish 6 8 6.0 7.3 -10% 1 6.5 6.5 21.1 0.00
Pacific cod 28 4 4.1 4.0 1% 1 0.0 0.0 0.2 0.65
Pollock adult 109 21 4.6 4.2 5% 1 3.5 3.5 3.9 0.05
Pollock juvenile 111 30 4.1 3.9 2% 1 0.6 0.6 0.7 0.41
Sandfish 3 6 42 4.0 2% 1 0.1 0.1 0.6 0.46
Southern rock sole 10 12 1.2 3.7 -51% 1 34.7 34.7 282.7 0.00
Squid 7 15 4.0 3.7 4% 1 0.4 0.4 1.6 0.21
Yellow Irish lord 45 15 4.1 4.2 2% 1 0.2 0.2 0.2 0.69
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Steller sea lion prey. For instance, we provide
the only data on proximate composition of adult
pollock during nonspawning seasons in the Gulf
of Alaska and Aleutian Islands region. We also
present the first data on proximate composition
of juvenile pollock in the Aleutian Islands region
and eastern Bering Sea. Previous to this study,
there was no published information on Pacific
cod proximate composition or energy density in
the eastern Bering Sea. We also present the only
information on proximate composition of adult
Atka mackerel—one of the most important prey
of Steller sea lions in the Aleutian Islands region
(Sinclair & Zeppelin, 2002).

Species with high lipid content tended to have
relatively high energy density and low moisture
content. A positive relationship between lipid
content and energy density has been observed by
other researchers (Anthony et al., 2000; Van Pelt et
al., 1997), as has the inverse relationship between
energy density and moisture content (Payne et al.,
1999; Van Pelt et al., 1997). “Forage fish” (such
as Pacific herring) are expected to have high lipid
content and energy density relative to “ground-
fish” (such as pollock and cod) (Anthony et al.,
2000; Payne et al., 1999; Van Pelt et al., 1997).
Our results generally were consistent with these
expectations; however, not all groundfish species
had energy densities lower than forage fish. In
particular, rockfish had energy densities similar to
Pacific herring. Our results also showed that not
all forage fish had energy densities higher than
groundfish—capelin had intermediate energy den-
sities similar to walleye pollock and Pacific cod.

The energetic demands of spawning are expected
to cause seasonal variation in fish energy den-
sity. For instance, pollock lose approximately
37% of their prespawning body weight and 46%
of their energy content during spawning (Smith
et al., 1988). Pacific cod expend approximately 30%
of their total energy during the month in which spawn-
ing occurs. Although much of these energy losses
are due to loss of body mass, decreases in energy
density of tissues occurs in both species. Pacific
cod energy density remains low during the first few
months postspawning and then begins to increase as
fish replenish their body stores (Smith et al., 1990).
Similarly, we found that adult pollock energy density
was lowest during the postspawning period (May to
August), but then increased during the months previ-
ous to spawning (November to March).

Synthesis of our data with published informa-
tion highlighted other seasonal patterns. We found
that energy density of northern rockfish and salmon
was greatest during summer months. Other studies
similarly show that energy density of Alaska fish
(juvenile herring) increased from spring to summer
during good feeding conditions and then declined

later in the year as fish use stored energy to sur-
vive poor winter feeding conditions (Foy & Paul,
1999; Paul & Paul, 1998). These spawning- and
overwintering-related patterns in fish energy den-
sity emphasize the need for season-specific bioen-
ergetic models of sea lion prey requirements.

Comparison of our data with previously pub-
lished information also suggested geographic
patterns in fish energy density, at least for some
species. Pollock energy density was greater in the
eastern Bering Sea than in the Aleutian Islands
region or the Gulf of Alaska. Pacific cod, on the
other hand, showed no geographic variability in
energy density.

In addition to seasonal and geographic patterns,
we also found sex-specific differences in energy
density. Atka mackerel males had a greater energy
density than females during the summer spawning
season. This result is in contrast to previous stud-
ies of groundfish (pollock and Pacific cod), which
showed no sex-related differences in energy den-
sity during the breeding season (Smith et al., 1988,
1990). Studies of forage fish (such as capelin and
sand lance) demonstrated sex-related differences in
energy density, although in these studies, females
(and, in particular, gravid females) had the greatest
energy density, presumably due to the high energy
content of their egg masses (Anthony et al., 2000;
Montevecchi & Piatt, 1984; Robards et al., 1999).
Our results would be consistent with these studies,
if all the female Atka mackerel were spawned out;
however, of the four female fish whose spawning
state was recorded, two were in prespawning condi-
tion, one was ripe, and one was spawned out. More
detailed sampling of Atka mackerel energy content
with relation to spawning state is needed to deter-
mine how spawning state affects energy density.
Another hypothesis is that Atka mackerel males
have greater energy density than females during the
spawning season because of the energetic demands
of nest-guarding. Batches of eggs are spawned in
rock crevices by females and guarded by brightly
colored males until hatching (Zolotov, 1993).

Parallel protein analyses showed that although
the two laboratory methods performed similarly
for many samples, for a number of samples, the
Kjeldahl method employed at FPL produced
lower estimates of protein content than the Dumas
method employed at ABL. In fact, estimates of
protein content less than 12% wet weight rarely
are seen in the literature (Montevecchi & Piatt,
1984; Payne et al., 1999). This leads us to con-
clude that data on protein content measured by the
Kjeldahl method should be treated with caution,
particularly when the reported values are less than
approximately 10%. Fish were sent to both labo-
ratories for analysis to ensure that the potential
for exceptionally low percent protein values for a
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given species, which could result from anomalous
protein data from FPL, was balanced by protein
data from ABL. Nonetheless, seven of the 17 spe-
cies included in this study were processed only at
FPL: salmon, surf smelt, capelin, Pacific herring,
rock sole, smooth lumpsucker, and snailfish. Thus,
there exists the potential for the protein composi-
tion of these species to be underestimated. The pro-
tein content of most of these species were reported
to be 14%-20%, however, well within the range
of expected values. The exceptions were smooth
lumpsucker and snailfish, for which protein con-
tents of 5%-7% were reported.

The two-way ANOVA of the entire data set
indicated no statistically significant effect of labo-
ratory on energy density. Furthermore, it is argu-
able that the biological effect is not significant.
For most of the species included in the ANOVA,
the difference between energy density values esti-
mated from FPL and ABL data was less than 10%
(Table 6), which is within the margin of error of
the quality control analyses routinely performed
during proximate analysis. The two species for
which the difference was greater than 10% were
northern and southern rock sole.

It should be pointed out that the proximate total
of our samples (percent lipid + percent protein +
percent moisture + percent ash) occasionally devi-
ated from 100%. One of the reasons likely stems
from the fact that neither of the protein analy-
sis methods directly measures protein content.
Instead, nitrogen content is directly measured,
and a standard conversion factor, 6.25, is used to
convert from percent nitrogen to percent protein
(Anonymous, 2002); even so, the precise relation-
ship between nitrogen and protein depends on the
amino acid composition of the sample because dif-
ferent amino acids contain different percentages of
nitrogen. Since each fish species is likely to have
a slightly different amino acid composition, the
6.25 conversion factor may result in a slight over-
or underestimate of protein content and, thus, a
proximate total greater or less than 100% (Jones,
1931). In our data, deviations around 100% ranged
from 0.5% to 1.5%.

In summary, this study provides data which
improve the seasonal and geographic coverage of
information on proximate composition and energy
density of fish from Alaskan waters. These data are
critical for seasonally and geographically explicit
estimates of Steller sea lion prey requirements,
a necessary improvement over previous model
estimates of annual prey requirements (Winship
et al., 2002). These data also can contribute to
bioenergetic modeling of the prey requirements of
other predators in Alaska such as groundfish, fur
seals, and marine birds.
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